Free Access
Med Sci (Paris)
Volume 21, Number 1, Janvier 2005
Page(s) 61 - 65
Section M/S Revues
Published online 15 January 2005
  1. Lafontan M, Langin D. Régulation neuro-humorale de la lipolyse : aspects physiologiques et physiopathologiques. Med Sci (Paris) 1998; 14 : 865–76.
  2. Holm C, Osterlund T, Laurell H, et al. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr 2000; 20 : 365–93.
  3. Langin D, Lafontan M. Lipolysis and lipid mobilization in human adipose tissue. In : Bray GA, Bouchard C, eds. Handbook of obesity. Etiology and pathophysiology, 2nd ed. New York : Marcel Dekker Inc, 2004 : 515–32.
  4. Langin D, Lucas S, Lafontan M. Millenium fat-cell lipolysis reveals unsuspected novel tracks. Hormon Metab Res 2000; 32 : 443–52.
  5. Capeau J. Voies de signalisation de l’insuline : mécanismes affectés dans l’insulino-résistance. Med Sci (Paris) 2003; 19 : 834–9.
  6. Soeder KJ, Snedden SK, Cao W, et al. The β3-adrenergic receptor activates mitogen activated protein kinase in adipocytes through a Gi-dependent mechanism. J Biol Chem 1999; 274 : 12017–22.
  7. Ryden M, Dicker A, van Harmelen V, et al. Mapping of early signaling events in tumor necrosis-alpha-mediated lipolysis in human fat cells. J Biol Chem 2002; 277 : 1085–91.
  8. Zhang HH, Halbleib M, Ahmad F, et al. Tumor necrosis factor-α stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes 2002; 51 : 2929–35.
  9. Greenberg AS, Shen WJ, Muliro K, et al. Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J Biol Chem 2001; 276 : 45456–61.
  10. Horowitz JF. Fatty acid mobilization from adipose tissue during exercise. Trends Endocrinol Metab 2003; 14 : 386–92.
  11. Kuhn M. Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res 2003; 93 : 700–9.
  12. Sengenes C, Berlan M, de Glisezinski I, et al. Natriuretic peptides : a new lipolytic pathway in human adipocytes. FASEB J 2000; 14 : 1345–51.
  13. Sengenes C, Bouloumié A, Hauner H, et al. Involvement of a cGMP-dependent pathway in natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes. J Biol Chem 2003; 278 : 48617–26.
  14. Moro C, Galitzky J, Sengenes C, et al. Functional and pharmacological characterization of the natriuretic peptide-dependent lipolytic pathway in human fat cells. J Pharmacol Exp Ther 2004; 308 : 984–92.
  15. Sengenes C, Zakaroff-Girard A, Moulin A, et al. Natriuretic peptide-dependent lipolysis in fat cells is a primate specificity. Am J Physiol 2002; 283 : R257–65.
  16. Lafontan M, Arner P. Application of in situ microdialysis to measure metabolic and vascular responses in adipose tissue. Trends Pharmacol Sci 1996; 17 : 309–13.
  17. Galitzky J, Sengenes C, Thalamas C, et al. The lipid mobilizing effect of atrial natriuretic peptides is unrelated to sympathetic nervous system activation or obesity in young men. J Lipid Res 2001; 42 : 536–44.
  18. Moro C, Crampes F, Sengenes C, et al. Atrial natriuretic peptide contributes to the physiological control of lipid mobilization in humans. FASEB J 2004; 18 : 908–10.
  19. Wang TJ, Larson MG, Levy D, et al. Impact of obesity on plasma natriuretic peptide levels. Circulation 2004; 109 : 594–600.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.