Free Access
Issue
Med Sci (Paris)
Volume 21, Number 1, Janvier 2005
Page(s) 55 - 60
Section M/S Revues
DOI https://doi.org/10.1051/medsci/200521155
Published online 15 January 2005
  1. Gordon RD, Klemm SA, Tunny TJ, et al. Gordon’s syndrome : a sodium-volume-dependent form of hypertension with a genetic basis. In : Laragh JH, Brenner BM, eds. Hypertension : pathophysiology, diagnosis, and management, 2nd ed. New York : Raven, Press Ltd, 1995 : 2111–3. [Google Scholar]
  2. Disse-Nicodeme S, Desitter I, Fiquet-Kempf B, et al. Genetic heterogeneity of familial hyperkalaemic hypertension. J Hypertens 2001; 19 : 1957–64. [Google Scholar]
  3. Wilson FH, Disse-Nicodeme S, Choate KA, et al. Human hypertension caused by mutations in WNK kinases. Science 2001; 293 : 1107–12. [Google Scholar]
  4. Xu B, English JM, Wilsbacher JL, et al. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem 2000; 275 : 16795–801. [Google Scholar]
  5. Xu BE, Min X, Stippec S, Lee BH, et al. Regulation of WNK1 by an autoinhibitory domain and autophosphorylation. J Biol Chem 2002; 277 : 48456–62. [Google Scholar]
  6. Verissimo F, Jordan P. WNK kinases, a novel protein kinase subfamily in multi-cellular organisms. Oncogene 2001; 20 : 5562–9. [Google Scholar]
  7. Wang Z, Yang CL, Ellison DH. Comparison of WNK4 and WNK1 kinase and inhibiting activities. Biochem Biophys Res Commun 2004; 317 : 939–44. [Google Scholar]
  8. Xu BE, Stippec S, Lenertz L, et al. WNK1 activates ERK5 by an MEKK2/3-dependent mechanism. J Biol Chem 2004; 279 : 7826–31. [Google Scholar]
  9. Delaloy C, Lu J, Houot AM, et al. Multiple promoters in the WNK1 gene : one controls expression of a kidney-specific kinase-defective isoform. Mol Cell Biol 2003; 23 : 9208–21. [Google Scholar]
  10. O’Reilly M, Marshall E, Speirs HJ, Brown RW. WNK1, a gene within a novel blood pressure control pathway, tissue-specifically generates radically different isoforms with and without a kinase domain. J Am Soc Nephrol 2003; 14 : 2447–56. [Google Scholar]
  11. Choate KA, Kahle KT, Wilson FH, et al. WNK1, a kinase mutated in inherited hypertension with hyperkalemia, localizes to diverse Cl-transporting epithelia. Proc Natl Acad Sci USA 2003; 100 : 663–8. [Google Scholar]
  12. Kahle KT, Gimenez I, Hassan H, et al. WNK4 regulates apical and basolateral Cl flux in extrarenal epithelia. Proc Natl Acad Sci USA 2004; 101 : 2064–9. [Google Scholar]
  13. Schnermann J. Sodium transport deficiency and sodium balance in gene-targeted mice. Acta Physiol Scand 2001; 173 : 59–66. [Google Scholar]
  14. Masilamani S, Wang X, Kim GH, et al. Time course of renal Na-K-ATPase, NHE3, NKCC2, NCC, and ENaC abundance changes with dietary NaCl restriction. Am J Physiol Renal Physiol 2002; 283 : 648–57. [Google Scholar]
  15. Wang W. Regulation of renal K transport by dietary K intake. Annu Rev Physiol 2004; 66 : 547–69. [Google Scholar]
  16. Yoo D, Kim BY, Campo C, et al. Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone-induced kinase, SGK-1, and protein kinase A. J Biol Chem 2003; 278 : 23066–75. [Google Scholar]
  17. Wilson FH, Kahle KT, Sabath E, et al. Molecular pathogenesis of inherited hypertension with hyperkalemia : the Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proc Natl Acad Sci USA 2003; 100 : 680–4. [Google Scholar]
  18. Yang CL, Angell J, Mitchell R, Ellison DH. WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest 2003; 111 : 1039–45. [Google Scholar]
  19. Kahle KT, Wilson FH, Leng Q, et al. WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat Genet 2003; 35 : 372–6. [Google Scholar]
  20. Schambelan M, Sebastian A, Rector FC Jr. Mineralocorticoid-resistant renal hyperkalemia without salt wasting (type II pseudohypoaldosteronism) : role of increased renal chloride reabsorption. Kidney Int 1981 : 19 : 716–27. [Google Scholar]
  21. Yamauchi K, Rai T, Kobayashi K, et al. Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins. Proc Natl Acad Sci USA 2004; 101 : 4690–4. [Google Scholar]
  22. Kahle KT, MacGregor GG, Wilson FH, et al. Paracellular Cl– permeability is regulated by WNK4 kinase : Insight into normal physiology and hypertension. Proc Natl Acad Sci USA 2004; 101 : 14877–82. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.