Accès gratuit
Med Sci (Paris)
Volume 21, Numéro 1, Janvier 2005
Page(s) 66 - 72
Section M/S Revues
Publié en ligne 15 janvier 2005
  1. Dunlap JC, Loros JJ, DeCoursey PJ. Chronobiology : biological timekeeping. Sunderland, MA : Sinauer Associates, 2003 : 406 p.
  2. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature 2002; 418 : 935–41.
  3. Cermakian N, Boivin DB. A molecular perspective of human circadian rhythm disorders. Brain Res Brain Res Rev 2003; 42 : 204–20.
  4. Emery P, Reppert SM. A rhythmic ror. Neuron 2004; 43 : 443–6.
  5. Hattar S, Lucas RJ, Mrosovsky N, et al. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 2003; 424 : 76–81.
  6. Hannibal J. Neurotransmitters of the retino-hypothalamic tract. Cell Tissue Res 2002; 309 : 73–88.
  7. Travnickova-Bendova Z, Cermakian N, Reppert SM, Sassone-Corsi P. Bimodal regulation of mperiod promoters by creb-dependent signaling and clock/bmal1 activity. Proc Natl Acad Sci USA 2002; 99 : 7728–33.
  8. Challet E, Pevet P. Interactions between photic and nonphotic stimuli to synchronize the master circadian clock in mammals. Front Biosci 2003; 8 : S246–57.
  9. Moore RY, Speh JC. Gaba is the principal neurotransmitter of the circadian system. Neurosci Lett 1993; 150 : 112–6.
  10. Perreau-Lenz S, Kalsbeek A, Garidou ML, et al. Suprachiasmatic control of melatonin synthesis in rats : inhibitory and stimulatory mechanisms. Eur J Neurosci 2003; 17 : 221–8.
  11. Dardente H, Menet JS, Challet E, et al. Daily and circadian expression of neuropeptides in the suprachiasmatic nuclei of nocturnal and diurnal rodents. Brain Res Mol Brain Res 2004; 124 : 143–51.
  12. Welsh DK, Logothetis DE, Meister M, Reppert SM. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 1995; 14 : 697–706.
  13. Liu C, Weaver DR, Strogatz SH, Reppert SM. Cellular construction of a circadian clock : period determination in the suprachiasmatic nuclei. Cell 1997; 91 : 855–60.
  14. Herzog ED, Aton SJ, Numano R, et al. Temporal precision in the mammalian circadian system : a reliable clock from less reliable neurons. J Biol Rhythms 2004; 19 : 35–46.
  15. Yamaguchi S, Isejima H, Matsuo T, et al. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 2003; 302 : 1408–12.
  16. Nakamura W, Honma S, Shirakawa T, Honma K. Regional pacemakers composed of multiple oscillator neurons in the rat suprachiasmatic nucleus. Eur J Neurosci 2001; 14 : 666–74.
  17. Hamada T, LeSauter J, Venuti JM, Silver R. Expression of period genes : rhythmic and nonrhythmic compartments of the suprachiasmatic nucleus pacemaker. J Neurosci 2001; 21 : 7742–50.
  18. Dardente H, Poirel VJ, Klosen P, et al. Per and neuropeptide expression in the rat suprachiasmatic nuclei : compartmentalization and differential cellular induction by light. Brain Res 2002; 958 : 261–71.
  19. Yan L, Okamura H. Gradients in the circadian expression of per1 and per2 genes in the rat suprachiasmatic nucleus. Eur J Neurosci 2002; 15 : 1153–62.
  20. LeSauter J, Yan L, Vishnubhotla B, et al. A short half-life gfp mouse model for analysis of suprachiasmatic nucleus organization. Brain Res 2003; 964 : 279–87.
  21. Hamada T, Antle MC, Silver R. Temporal and spatial expression patterns of canonical clock genes and clock-controlled genes in the suprachiasmatic nucleus. Eur J Neurosci 2004; 19 : 1741–8.
  22. Herzog ED, Geusz ME, Khalsa SB, et al. Circadian rhythms in mouse suprachiasmatic nucleus explants on multimicroelectrode plates. Brain Res 1997; 757 : 285–90.
  23. Jobst EE, Allen CN. Calbindin neurons in the hamster suprachiasmatic nucleus do not exhibit a circadian variation in spontaneous firing rate. Eur J Neurosci 2002; 16 : 2469–74.
  24. Low-Zeddies SS, Takahashi JS. Chimera analysis of the clock mutation in mice shows that complex cellular integration determines circadian behavior. Cell 2001; 105 : 25–42.
  25. Yan L, Takekida S, Shigeyoshi Y, Okamura H. Per1 and per2 gene expression in the rat suprachiasmatic nucleus : circadian profile and the compartment-specific response to light. Neuroscience 1999; 94 : 141–50.
  26. Karatsoreos IN, Yan L, LeSauter J, Silver R. Phenotype matters : Identification of light-responsive cells in the mouse suprachiasmatic nucleus. J Neurosci 2004; 24 : 68–75.
  27. Yan L, Silver R. Differential induction and localization of mper1 and mper2 during advancing and delaying phase shifts. Eur J Neurosci 2002; 16 : 1531–40.
  28. Harmar AJ, Marston HM, Shen S, et al. The vpac(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 2002 109 : 497–508.
  29. Hughes AT, Fahey B, Cutler DJ, et al. Aberrant gating of photic input to the suprachiasmatic circadian pacemaker of mice lacking the vpac2 receptor. J Neurosci 2004; 24 : 3522–6.
  30. Colwell CS, Michel S, Itri J, et al. Disrupted circadian rhythms in vip- and phi-deficient mice. Am J Physiol Regul Integr Comp Physiol 2003; 285 : R939–49.
  31. Liu C, Reppert SM. Gaba synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 2000; 25 : 123–8.
  32. Shinohara K, Hiruma H, Funabashi T, Kimura F. Gabaergic modulation of gap junction communication in slice cultures of the rat suprachiasmatic nucleus. Neuroscience 2000; 96 : 591–6.
  33. Prosser RA, Rutishauser U, Ungers G, et al. Intrinsic role of polysialylated neural cell adhesion molecule in photic phase resetting of the mammalian circadian clock. J Neurosci 2003; 23 : 652–8.
  34. Serviere J, Lavialle M. Astrocytes in the mammalian circadian clock : putative roles. Prog Brain Res 1996; 111 : 57–73.
  35. Nagano M, Adachi A, Nakahama K, et al. An abrupt shift in the day/night cycle causes desynchrony in the mammalian circadian center. J Neurosci 2003; 23 : 6141–51.
  36. de la Iglesia HO, Cambras T, Schwartz WJ, Diez-Noguera A. Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Curr Biol 2004; 14 : 796–800.
  37. Shinohara K, Honma S, Katsuno Y, et al. Two distinct oscillators in the rat suprachiasmatic nucleus in vitro. Proc Natl Acad Sci USA 1995; 92 : 7396–400.
  38. Shirakawa T, Honma S, Katsuno Y, et al. Synchronization of circadian firing rhythms in cultured rat suprachiasmatic neurons. Eur J Neurosci 2000; 12 : 2833–8.
  39. De la Iglesia HO, Meyer J, Carpino A Jr, Schwartz WJ. Antiphase oscillation of the left and right suprachiasmatic nuclei. Science 2000; 290 : 799–801.
  40. Balsalobre A. Clock genes in mammalian peripheral tissues. Cell Tissue Res 2002; 309 : 193–9.
  41. Yamazaki S, Numano R, Abe M, et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 2000; 288 : 682–5.
  42. Pando MP, Morse D, Cermakian N, Sassone-Corsi P. Phenotypic rescue of a peripheral clock genetic defect via scn hierarchical dominance. Cell 2002; 110 : 107–17.
  43. Akhtar RA, Reddy AB, Maywood ES, et al. Circadian cycling of the mouse liver transcriptome, as revealed by cdna microarray, is driven by the suprachiasmatic nucleus. Curr Biol 2002; 12 : 540–50.
  44. Sakamoto K, Nagase T, Fukui H, et al. Multitissue circadian expression of rat period homolog (rper2) mrna is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain. J Biol Chem 1998; 273 : 27039–42.
  45. Yoo SH, Yamazaki S, Lowrey PL, et al. Period2 : luciferase real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 2004; 101 : 5339–46.
  46. Teboul M, Delaunay F. Ni maître ni esclave chez les horloges biologiques. Med Sci (Paris) 2004; 20 : 628–9.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.