Free Access
Med Sci (Paris)
Volume 20, Number 5, Mai 2004
Page(s) 587 - 592
Section Dossier technique
Published online 15 May 2004
  1. Anderson NG, Anderson NL. A policy and program for biotechnology. Am Biotechnol Lab 1985 (september-october). [Google Scholar]
  2. Fleischmann RD, Adams MD, Whit O, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995; 269 : 496–512. [Google Scholar]
  3. Rabilloud T, Heller M, Gasnier F, et al. Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J Biol Chem 2002; 277 : 19396–401. [Google Scholar]
  4. Wilkins MR, Gasteiger E, Sanchez JC, et al. Two-dimensional gel electrophoresis for proteome projects : the effects of protein hydrophobicity and copy number. Electrophoresis 1998; 19 : 1501–5. [Google Scholar]
  5. Corthals GL, Wasinger VC, Hochstrasser DF, Sanchez JC. The dynamic range of protein expression : A challenge for proteomic research. Electrophoresis 2000; 21 : 1104–15. [Google Scholar]
  6. Santoni V, Molloy MP, Rabilloud T. Membrane proteins and proteomics : un amour imposssible ? Electrophoresis 2000; 21 : 1054–70. [Google Scholar]
  7. Merchant M, Weinberger SR. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 2000; 21 : 1164–77. [Google Scholar]
  8. Dare TO, Davies HA, Turton JA, et al. Application of surface-enhanced laser desorption/ionization technology to the detection and identification of urinary parvalbumin-alpha : a biomarker of compound-induced skeletal muscle toxicity in the rat. Electrophoresis 2002; 23 : 3241–51. [Google Scholar]
  9. Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 2001; 19 : 242–7. [Google Scholar]
  10. MacCoss MJ, McDonald WH, Saraf A, et al. Shotgun identification of protein modifications from protein complexes and lens tissue. Proc Natl Acad Sci USA 2002; 99 : 7900–5. [Google Scholar]
  11. Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999; 17 : 994–9. [Google Scholar]
  12. Han DK, Eng J, Zhou H, Aebersold R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 2001; 19 : 946–51. [Google Scholar]
  13. Koller A, Washburn MP, Lange BM, et al. Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci USA 2002; 99 : 11969–74. [Google Scholar]
  14. Fields S, Song OK. A novel genetic system to detect protein-protein interactions. Nature 1989; 340 : 245–6. [Google Scholar]
  15. Rain JC, Selig L, De Reuse H, et al. The protein-protein interaction map of Helicobacter pylori. Nature 2001; 409 : 211–5. [Google Scholar]
  16. Puig O, Caspary F, Rigaut G, et al. The tandem affinity purification (TAP) method : A general procedure of protein complex purification. Methods 2001; 24 : 218–29. [Google Scholar]
  17. Gavin AC, Bosche M, Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002; 415 : 141–7. [Google Scholar]
  18. Bouveret E, Rigaut G, Shevchenko A, et al. A Sm-like protein complex that participates in mRNA degradation. EMBO J 2000; 19 : 1661–71. [Google Scholar]
  19. Fromont-Racine M, Mayes AE, Brunet-Simon A, et al. Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins. Yeast 2000; 17 : 95–110. [Google Scholar]
  20. Bader GD, Hogue CW. Analyzing yeast protein-protein interaction data obtained from different sources. Nat Biotechnol 2002; 20 : 991–7. [Google Scholar]
  21. Hsich G, Kenney K, Gibbs CJ, et al. The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N Engl J Med 1996; 335 : 924–30. [Google Scholar]
  22. Celis JE, Wolf H, Ostergaard M. Bladder squamous cell carcinoma biomarkers derived from proteomics. Electrophoresis 2000; 21 : 2115–21. [Google Scholar]
  23. Greco A, Bausch N, Coute Y, Diaz JJ. Characterization by two-dimensional gel electrophoresis of host proteins whose synthesis is sustained or stimulated during the course of Herpes simplex virus type 1 infection. Electrophoresis 2000; 21 : 2522–30. [Google Scholar]
  24. Deiwick J, Rappl C, Stender S, et al. Proteomic approaches to Salmonella pathogenicity Island 2 encoded proteins and the SsrAB regulon. Proteomics 2002; 2 : 792–9. [Google Scholar]
  25. Sanchez-Campillo M, Bini L, Comanducci M, et al. Identification of immunoreactive proteins of Chlamydia trachomatis by Western blot analysis of a two-dimensional electrophoresis map with patient sera. Electrophoresis 1999; 20 : 2269–79. [Google Scholar]
  26. Nilsson CL, Larsson T, Gustafsson E, et al. Identification of protein vaccine candidates from Helicobacter pylori using a preparative two-dimensional electrophoretic procedure and mass spectrometry. Anal Chem 2000; 72 : 2148–53. [Google Scholar]
  27. Grandi G. Antibacterial vaccine design using genomics and proteomics. Trends Biotechnol 2001; 19 : 181–8. [Google Scholar]
  28. Tonella L, Hoogland C, Binz PA, et al. New perspectives in the Escherichia coli proteome investigation. Proteomics 2001; 1 : 409–23. [Google Scholar]
  29. Aicher L, Wahl D, Arce A, et al. New insights into cyclosporine A nephrotoxicity by proteome analysis. Electrophoresis 1998; 19 : 1998–2003. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.