Accès gratuit
Numéro
Med Sci (Paris)
Volume 20, Numéro 5, Mai 2004
Page(s) 587 - 592
Section Dossier technique
DOI https://doi.org/10.1051/medsci/2004205587
Publié en ligne 15 mai 2004
  1. Anderson NG, Anderson NL. A policy and program for biotechnology. Am Biotechnol Lab 1985 (september-october). [Google Scholar]
  2. Fleischmann RD, Adams MD, Whit O, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995; 269 : 496–512. [Google Scholar]
  3. Rabilloud T, Heller M, Gasnier F, et al. Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J Biol Chem 2002; 277 : 19396–401. [Google Scholar]
  4. Wilkins MR, Gasteiger E, Sanchez JC, et al. Two-dimensional gel electrophoresis for proteome projects : the effects of protein hydrophobicity and copy number. Electrophoresis 1998; 19 : 1501–5. [Google Scholar]
  5. Corthals GL, Wasinger VC, Hochstrasser DF, Sanchez JC. The dynamic range of protein expression : A challenge for proteomic research. Electrophoresis 2000; 21 : 1104–15. [Google Scholar]
  6. Santoni V, Molloy MP, Rabilloud T. Membrane proteins and proteomics : un amour imposssible ? Electrophoresis 2000; 21 : 1054–70. [Google Scholar]
  7. Merchant M, Weinberger SR. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 2000; 21 : 1164–77. [Google Scholar]
  8. Dare TO, Davies HA, Turton JA, et al. Application of surface-enhanced laser desorption/ionization technology to the detection and identification of urinary parvalbumin-alpha : a biomarker of compound-induced skeletal muscle toxicity in the rat. Electrophoresis 2002; 23 : 3241–51. [Google Scholar]
  9. Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 2001; 19 : 242–7. [Google Scholar]
  10. MacCoss MJ, McDonald WH, Saraf A, et al. Shotgun identification of protein modifications from protein complexes and lens tissue. Proc Natl Acad Sci USA 2002; 99 : 7900–5. [Google Scholar]
  11. Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999; 17 : 994–9. [Google Scholar]
  12. Han DK, Eng J, Zhou H, Aebersold R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 2001; 19 : 946–51. [Google Scholar]
  13. Koller A, Washburn MP, Lange BM, et al. Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci USA 2002; 99 : 11969–74. [Google Scholar]
  14. Fields S, Song OK. A novel genetic system to detect protein-protein interactions. Nature 1989; 340 : 245–6. [Google Scholar]
  15. Rain JC, Selig L, De Reuse H, et al. The protein-protein interaction map of Helicobacter pylori. Nature 2001; 409 : 211–5. [Google Scholar]
  16. Puig O, Caspary F, Rigaut G, et al. The tandem affinity purification (TAP) method : A general procedure of protein complex purification. Methods 2001; 24 : 218–29. [Google Scholar]
  17. Gavin AC, Bosche M, Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002; 415 : 141–7. [Google Scholar]
  18. Bouveret E, Rigaut G, Shevchenko A, et al. A Sm-like protein complex that participates in mRNA degradation. EMBO J 2000; 19 : 1661–71. [Google Scholar]
  19. Fromont-Racine M, Mayes AE, Brunet-Simon A, et al. Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins. Yeast 2000; 17 : 95–110. [Google Scholar]
  20. Bader GD, Hogue CW. Analyzing yeast protein-protein interaction data obtained from different sources. Nat Biotechnol 2002; 20 : 991–7. [Google Scholar]
  21. Hsich G, Kenney K, Gibbs CJ, et al. The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N Engl J Med 1996; 335 : 924–30. [Google Scholar]
  22. Celis JE, Wolf H, Ostergaard M. Bladder squamous cell carcinoma biomarkers derived from proteomics. Electrophoresis 2000; 21 : 2115–21. [Google Scholar]
  23. Greco A, Bausch N, Coute Y, Diaz JJ. Characterization by two-dimensional gel electrophoresis of host proteins whose synthesis is sustained or stimulated during the course of Herpes simplex virus type 1 infection. Electrophoresis 2000; 21 : 2522–30. [Google Scholar]
  24. Deiwick J, Rappl C, Stender S, et al. Proteomic approaches to Salmonella pathogenicity Island 2 encoded proteins and the SsrAB regulon. Proteomics 2002; 2 : 792–9. [Google Scholar]
  25. Sanchez-Campillo M, Bini L, Comanducci M, et al. Identification of immunoreactive proteins of Chlamydia trachomatis by Western blot analysis of a two-dimensional electrophoresis map with patient sera. Electrophoresis 1999; 20 : 2269–79. [Google Scholar]
  26. Nilsson CL, Larsson T, Gustafsson E, et al. Identification of protein vaccine candidates from Helicobacter pylori using a preparative two-dimensional electrophoretic procedure and mass spectrometry. Anal Chem 2000; 72 : 2148–53. [Google Scholar]
  27. Grandi G. Antibacterial vaccine design using genomics and proteomics. Trends Biotechnol 2001; 19 : 181–8. [Google Scholar]
  28. Tonella L, Hoogland C, Binz PA, et al. New perspectives in the Escherichia coli proteome investigation. Proteomics 2001; 1 : 409–23. [Google Scholar]
  29. Aicher L, Wahl D, Arce A, et al. New insights into cyclosporine A nephrotoxicity by proteome analysis. Electrophoresis 1998; 19 : 1998–2003. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.