Free Access
Issue |
Med Sci (Paris)
Volume 19, Number 12, Décembre 2003
|
|
---|---|---|
Page(s) | 1242 - 1250 | |
Section | M/S revues | |
DOI | https://doi.org/10.1051/medsci/200319121242 | |
Published online | 15 December 2003 |
- Furchgott RF, Vanhoutte PM. Endothelium-derived relaxing and contracting factors. FASEB J 1989; 3 : 2007–18. [Google Scholar]
- Busse R, Edwards G, Félétou M, Fleming I, Vanhoutte PM, Weston AH. Endothelium-dependent hyperpolarization, a unifying hypothesis ? Trends Pharmacol Sci 2002; 23 : 374–80. [Google Scholar]
- Luckhoff A, Pohl U, Mulsch A, Busse R. Differential role of extra- and intracellular calcium in the release of EDRF and prostacyclin from cultured endothelial cells. Br J Pharmacol 1988; 95 : 189–96. [Google Scholar]
- Ghisdal P, Morel N. Cellular target of voltage and calcium-dependent K+ channel blockers involved in EDHF-mediated responses in rat superior mesenteric artery. Br J Pharmacol 2001; 134 :1021–8. [Google Scholar]
- McGuire JJ, Ding H, Triggle CR. Endothelium-derived relaxing factors : a focus on endothelium-derived hyperpolarizing factor. Can J Physiol Pharmacol 2001; 79 : 443–70. [Google Scholar]
- Garland CJ, Plane F. Relative importance of endothelium-derived hyperpolarizing factor for the relaxation of vascular smooth muscle in different arterial beds. In : Vanhoutte PM, ed. Endothelium-derived hyperpolarizing factor, vol. 1. Amsterdam : Harwood Academic Publishers, 1996 : 173–9. [Google Scholar]
- Corriu C, Félétou M, Canet E, Vanhoutte PM. Endothelium-derived factors and hyperpolarisations of the isolated carotid artery of the guinea-pig. Br J Pharmacol 1996; 119 : 959–64. [Google Scholar]
- Chataigneau T, Félétou M, Duhault J, Vanhoutte PM. Epoxyeicosatrienoic acids, potassium channel blockers and endothelium-dependent hyperpolarisation in the guinea-pig carotid artery. Br J Pharmacol 1998; 123 : 574–80. [Google Scholar]
- Zygmunt PM, Hogestatt ED. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery. Br J Pharmacol 1996; 117 : 1600–6. [Google Scholar]
- Quignard JF, Félétou M, Edwards G, Duhault J, Weston AH, Vanhoutte PM. Role of endothelial cells hyperpolarization in EDHF-mediated responses in the guinea-pig carotid artery. Br J Pharmacol 2000; 129 : 1103–12. [Google Scholar]
- Burnham MP, Bychkov R, Félétou M, et al. Characterization of an apamin-sensitive small conductance Ca2+-activated K+ channel in porcine coronary artery endothelium : relevance to EDHF. Br J Pharmacol 2002; 135 : 1133–43 [Google Scholar]
- Bychkov R, Burnham MP, Richards GR, et al. Characterization of a charybdotoxin-sensitive intermediate conductance Ca2+-activated K+ channel in porcine coronary endothelium : relevance to EDHF. Br J Pharmacol 2002; 137 : 1346–54. [Google Scholar]
- Busse R, Fichtner H, Luckhoff A, Kohlhardt M. Hyperpolarisation and increased free calcium in acetylcholine-stimulated endothelial cells. Am J Physiol 1988; 255 : H965–9. [Google Scholar]
- Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH. K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 1998; 396 : 269–72. [Google Scholar]
- Beny JL. Endothelial and smooth muscle cells hyperpolarized by bradykinin are not dye coupled. Am J Physiol 1990; 258 : H836–41. [Google Scholar]
- Doughty JM, Plane F, Langton PD. Charybdotoxin and apamin block EDHF in rat mesenteric artery if selectively applied to the endothelium. Am J Physiol 1999; 276 : H1107–12. [Google Scholar]
- Sandow SL, Tare M, Coleman HA, Hill CVE, Parkington HC. Involvement of gap junctions in the action of endothelium-derived hyperpolarizing factor. Circ Res 2002; 90 : 1108–13. [Google Scholar]
- Dora KA, Doyle MP, Duling BR. Elevation of intracellular calcium in smooth muscle causes endothelial cell generation of NO in arterioles. Proc Natl Acad Sci USA 1997; 94 : 6529–34. [Google Scholar]
- Beny JL, Pacicca C. Bidirectional electrical communication between smooth muscle and endothelial cells in the pig coronary artery. Am J Physiol 1994; 266 : H1465–72. [Google Scholar]
- Chaytor AY, Evens WH, Griffith TM. Central role of heterocellular gap junction communication in endothelium-dependent relaxations of rabbit arteries. J Physiol (London) 1998; 508 : 561–73. [Google Scholar]
- Yamamoto Y, Imaeda K, Suzuki H. Endothelium-dependent hyperpolarization and intercellular electrical coupling in guinea-pig mesenteric arterioles. J Physiol (London) 1999; 514 : 505–13. [Google Scholar]
- Emerson GG, Segal SS. Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries : role in vasomotor control. Circ Res 2000; 87 : 474–9. [Google Scholar]
- Campbell WB, Gebremedhin D, Pratt PF, Harder DR. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factor. Circ Res 1996; 78 : 415–23. [Google Scholar]
- Quilley J, McGiff JC. Is EDHF an epoxyeicosatrienoic acid ? Trends Pharmacol Sci 2000; 21 : 121–4. [Google Scholar]
- Fisslthaler B, Popp R, Kiss L, et al. Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature 1999; 401 : 493–7. [Google Scholar]
- Gauthier KM, Deeter C, Krishna UM, et al. 14,15-epoxyeicosa-5(Z)-enoic acid: a selective epoxyeicosatrienoic acid antagonist that inhibits endothelium-dependent hyperpolarization and relaxation in coronary arteries. Circ Res 2002; 90 : 1028–36. [Google Scholar]
- Fleming I, Fisslthaler B, Michaelis UR, Kiss L, Popp R, Busse R. The coronary EDHF stimulates multiple signalling pathways and proliferation in vascular cells. Pfluger’s Arch Eur J Physiol 2001; 442 : 511–8. [Google Scholar]
- Hoebel BG, Kostner GM, Graier WF. Activation of microsomal P450 mono-oxygenase by Ca2+ store depletion and its contribution to Ca2+ entry in porcine aortic endothelial cells. Br J Pharmacol 1997; 121 : 1579–88 [Google Scholar]
- Baron A, Frieden M, Bény JL. Epoxyeicosatrienoic acids activate a high-conductance, Ca2+-dependent K+ channel on pig coronary artery endothelial cells. J Physiol (London) 1997; 504 : 537–43. [Google Scholar]
- Popp R, Brandes RP, Ott G, Busse R, Fleming I. Dynamic modulation of inter-endothelial gap junctional communication by 11,12-epoxyeicosatrienoic acid. Circ Res 2002; 90 : 800–6. [Google Scholar]
- Popp R, Fleming I, Busse R. Pulsatile stretch in coronary arteries elicits release of endothelium-derived hyperpolarizing factor: a modulator of arterial compliance. Cir Res 1998; 82 : 696–703. [Google Scholar]
- Weston AH, Richards GR, Burnham MP, Félétou M, Vanhoutte PM, Edwards G. K+-induced hyperpolarization in rat mesenteric artery : identification, localization and role of Na+,K+-ATPases. Br J Pharmacol 2002; 136 : 918–26. [Google Scholar]
- Quignard JF, Félétou M, Thollon C, Vilaine JP, Duhault J, Vanhoutte PM. Potassium ions and endothelium-derived hyperpolarizing factor in guinea-pig carotid and porcine coronary arteries. Br J Pharmacol 1999; 127 : 27–34. [Google Scholar]
- Richards GR, Burnham MP, Edwards G, Félétou M, Vanhoutte PM, Weston AH. Suppression of K+-induced hyperpolarization by phenylephrine in rat mesenteric artery : relevance to studies of endothelium-derived hyperpolarizing factor. Br J Pharmacol 2001; 134 : 1–5. [Google Scholar]
- Nelson MT, Patlak JB, Worley JF, Standen NB. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 1990; 259 : C3–18. [Google Scholar]
- Shimokawa H, Yasutake H, Fujii K, et al. The importance of the hyperpolarizing mechanism increases as the vessel size decrease in endothelium-dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol 1996; 28 : 703–11. [Google Scholar]
- Urakami-Harasawa L, Shimokawa H, Nakashima M, Egashira K, Takeshita A. Importance of endothelium-derived hyperpolarizing factor in human arteries. J Clin Invest 1997; 100 : 2793–9. [Google Scholar]
- Brandes RP, Schmitz-Winnenthal FH, Félétou M, et al. An endothelium-derived hyperpolarizing factor distinct from NO and prostacyclin is a major endothelium-dependent vasodilator in resistance vessels of wild type and endothelial NO synthase knock-out mice. Proc Natl Acad Sci USA 2000; 57 : 9747–52. [Google Scholar]
- Parkington HC, Chow JA, Evans RG, Coleman HA, Tare M. Role for endothelium-derived hyperpolarizing factor in rat mesenteric and hindlimb circulation in vivo. J Physiol (London) 2002; 542 : 929–37. [Google Scholar]
- Nakashima M, Mombouli JV, Taylor AA, Vanhoutte PM. Endothelium-dependent hyperpolarisation caused by bradykinin in human coronary arteries. J Clin Invest 1993; 92 : 2867–71. [Google Scholar]
- Vanhoutte PM. Endothelium-derived hyperpolarizing factor. Amsterdam : Harwood Academic Publishers, 1996 : 338 p. [Google Scholar]
- Vanhoutte PM. Endothelium-dependent hyperpolarizations. Amsterdam : Harwood Academic Publishers, 1999 : 436 p. [Google Scholar]
- Vanhoutte PM. EDHF 2000. London : Taylor and Francis, 2001 : 502 p. [Google Scholar]
- Vanhoutte PM. EDHF 2002. London : Taylor and Francis, 2004 (sous presse). [Google Scholar]
- Taddei S, Ghiadoni L, Virdis A, Buralli S, Salvetti A. Vasodilatation to bradykinin is mediated by an ouabain-sensitive pathway as a compensatory mechanism for impaired nitric oxide availability inessential hypertensive patients. Circulation 1999; 100 : 1400–5. [Google Scholar]
- Thollon C, Bidouard JP, Cambarrat C, et al. Alteration of endothelium-dependent hyperpolarizations in porcine coronary arteries with regenerated endothelium. Circ Res 1999; 84 : 371–7. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.