Accès gratuit
Numéro
Med Sci (Paris)
Volume 19, Numéro 12, Décembre 2003
Page(s) 1242 - 1250
Section M/S revues
DOI https://doi.org/10.1051/medsci/200319121242
Publié en ligne 15 décembre 2003
  1. Furchgott RF, Vanhoutte PM. Endothelium-derived relaxing and contracting factors. FASEB J 1989; 3 : 2007–18. [Google Scholar]
  2. Busse R, Edwards G, Félétou M, Fleming I, Vanhoutte PM, Weston AH. Endothelium-dependent hyperpolarization, a unifying hypothesis ? Trends Pharmacol Sci 2002; 23 : 374–80. [Google Scholar]
  3. Luckhoff A, Pohl U, Mulsch A, Busse R. Differential role of extra- and intracellular calcium in the release of EDRF and prostacyclin from cultured endothelial cells. Br J Pharmacol 1988; 95 : 189–96. [Google Scholar]
  4. Ghisdal P, Morel N. Cellular target of voltage and calcium-dependent K+ channel blockers involved in EDHF-mediated responses in rat superior mesenteric artery. Br J Pharmacol 2001; 134 :1021–8. [Google Scholar]
  5. McGuire JJ, Ding H, Triggle CR. Endothelium-derived relaxing factors : a focus on endothelium-derived hyperpolarizing factor. Can J Physiol Pharmacol 2001; 79 : 443–70. [Google Scholar]
  6. Garland CJ, Plane F. Relative importance of endothelium-derived hyperpolarizing factor for the relaxation of vascular smooth muscle in different arterial beds. In : Vanhoutte PM, ed. Endothelium-derived hyperpolarizing factor, vol. 1. Amsterdam : Harwood Academic Publishers, 1996 : 173–9. [Google Scholar]
  7. Corriu C, Félétou M, Canet E, Vanhoutte PM. Endothelium-derived factors and hyperpolarisations of the isolated carotid artery of the guinea-pig. Br J Pharmacol 1996; 119 : 959–64. [Google Scholar]
  8. Chataigneau T, Félétou M, Duhault J, Vanhoutte PM. Epoxyeicosatrienoic acids, potassium channel blockers and endothelium-dependent hyperpolarisation in the guinea-pig carotid artery. Br J Pharmacol 1998; 123 : 574–80. [Google Scholar]
  9. Zygmunt PM, Hogestatt ED. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery. Br J Pharmacol 1996; 117 : 1600–6. [Google Scholar]
  10. Quignard JF, Félétou M, Edwards G, Duhault J, Weston AH, Vanhoutte PM. Role of endothelial cells hyperpolarization in EDHF-mediated responses in the guinea-pig carotid artery. Br J Pharmacol 2000; 129 : 1103–12. [Google Scholar]
  11. Burnham MP, Bychkov R, Félétou M, et al. Characterization of an apamin-sensitive small conductance Ca2+-activated K+ channel in porcine coronary artery endothelium : relevance to EDHF. Br J Pharmacol 2002; 135 : 1133–43 [Google Scholar]
  12. Bychkov R, Burnham MP, Richards GR, et al. Characterization of a charybdotoxin-sensitive intermediate conductance Ca2+-activated K+ channel in porcine coronary endothelium : relevance to EDHF. Br J Pharmacol 2002; 137 : 1346–54. [Google Scholar]
  13. Busse R, Fichtner H, Luckhoff A, Kohlhardt M. Hyperpolarisation and increased free calcium in acetylcholine-stimulated endothelial cells. Am J Physiol 1988; 255 : H965–9. [Google Scholar]
  14. Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH. K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 1998; 396 : 269–72. [Google Scholar]
  15. Beny JL. Endothelial and smooth muscle cells hyperpolarized by bradykinin are not dye coupled. Am J Physiol 1990; 258 : H836–41. [Google Scholar]
  16. Doughty JM, Plane F, Langton PD. Charybdotoxin and apamin block EDHF in rat mesenteric artery if selectively applied to the endothelium. Am J Physiol 1999; 276 : H1107–12. [Google Scholar]
  17. Sandow SL, Tare M, Coleman HA, Hill CVE, Parkington HC. Involvement of gap junctions in the action of endothelium-derived hyperpolarizing factor. Circ Res 2002; 90 : 1108–13. [Google Scholar]
  18. Dora KA, Doyle MP, Duling BR. Elevation of intracellular calcium in smooth muscle causes endothelial cell generation of NO in arterioles. Proc Natl Acad Sci USA 1997; 94 : 6529–34. [Google Scholar]
  19. Beny JL, Pacicca C. Bidirectional electrical communication between smooth muscle and endothelial cells in the pig coronary artery. Am J Physiol 1994; 266 : H1465–72. [Google Scholar]
  20. Chaytor AY, Evens WH, Griffith TM. Central role of heterocellular gap junction communication in endothelium-dependent relaxations of rabbit arteries. J Physiol (London) 1998; 508 : 561–73. [Google Scholar]
  21. Yamamoto Y, Imaeda K, Suzuki H. Endothelium-dependent hyperpolarization and intercellular electrical coupling in guinea-pig mesenteric arterioles. J Physiol (London) 1999; 514 : 505–13. [Google Scholar]
  22. Emerson GG, Segal SS. Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries : role in vasomotor control. Circ Res 2000; 87 : 474–9. [Google Scholar]
  23. Campbell WB, Gebremedhin D, Pratt PF, Harder DR. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factor. Circ Res 1996; 78 : 415–23. [Google Scholar]
  24. Quilley J, McGiff JC. Is EDHF an epoxyeicosatrienoic acid ? Trends Pharmacol Sci 2000; 21 : 121–4. [Google Scholar]
  25. Fisslthaler B, Popp R, Kiss L, et al. Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature 1999; 401 : 493–7. [Google Scholar]
  26. Gauthier KM, Deeter C, Krishna UM, et al. 14,15-epoxyeicosa-5(Z)-enoic acid: a selective epoxyeicosatrienoic acid antagonist that inhibits endothelium-dependent hyperpolarization and relaxation in coronary arteries. Circ Res 2002; 90 : 1028–36. [Google Scholar]
  27. Fleming I, Fisslthaler B, Michaelis UR, Kiss L, Popp R, Busse R. The coronary EDHF stimulates multiple signalling pathways and proliferation in vascular cells. Pfluger’s Arch Eur J Physiol 2001; 442 : 511–8. [Google Scholar]
  28. Hoebel BG, Kostner GM, Graier WF. Activation of microsomal P450 mono-oxygenase by Ca2+ store depletion and its contribution to Ca2+ entry in porcine aortic endothelial cells. Br J Pharmacol 1997; 121 : 1579–88 [Google Scholar]
  29. Baron A, Frieden M, Bény JL. Epoxyeicosatrienoic acids activate a high-conductance, Ca2+-dependent K+ channel on pig coronary artery endothelial cells. J Physiol (London) 1997; 504 : 537–43. [Google Scholar]
  30. Popp R, Brandes RP, Ott G, Busse R, Fleming I. Dynamic modulation of inter-endothelial gap junctional communication by 11,12-epoxyeicosatrienoic acid. Circ Res 2002; 90 : 800–6. [Google Scholar]
  31. Popp R, Fleming I, Busse R. Pulsatile stretch in coronary arteries elicits release of endothelium-derived hyperpolarizing factor: a modulator of arterial compliance. Cir Res 1998; 82 : 696–703. [Google Scholar]
  32. Weston AH, Richards GR, Burnham MP, Félétou M, Vanhoutte PM, Edwards G. K+-induced hyperpolarization in rat mesenteric artery : identification, localization and role of Na+,K+-ATPases. Br J Pharmacol 2002; 136 : 918–26. [Google Scholar]
  33. Quignard JF, Félétou M, Thollon C, Vilaine JP, Duhault J, Vanhoutte PM. Potassium ions and endothelium-derived hyperpolarizing factor in guinea-pig carotid and porcine coronary arteries. Br J Pharmacol 1999; 127 : 27–34. [Google Scholar]
  34. Richards GR, Burnham MP, Edwards G, Félétou M, Vanhoutte PM, Weston AH. Suppression of K+-induced hyperpolarization by phenylephrine in rat mesenteric artery : relevance to studies of endothelium-derived hyperpolarizing factor. Br J Pharmacol 2001; 134 : 1–5. [Google Scholar]
  35. Nelson MT, Patlak JB, Worley JF, Standen NB. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 1990; 259 : C3–18. [Google Scholar]
  36. Shimokawa H, Yasutake H, Fujii K, et al. The importance of the hyperpolarizing mechanism increases as the vessel size decrease in endothelium-dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol 1996; 28 : 703–11. [Google Scholar]
  37. Urakami-Harasawa L, Shimokawa H, Nakashima M, Egashira K, Takeshita A. Importance of endothelium-derived hyperpolarizing factor in human arteries. J Clin Invest 1997; 100 : 2793–9. [Google Scholar]
  38. Brandes RP, Schmitz-Winnenthal FH, Félétou M, et al. An endothelium-derived hyperpolarizing factor distinct from NO and prostacyclin is a major endothelium-dependent vasodilator in resistance vessels of wild type and endothelial NO synthase knock-out mice. Proc Natl Acad Sci USA 2000; 57 : 9747–52. [Google Scholar]
  39. Parkington HC, Chow JA, Evans RG, Coleman HA, Tare M. Role for endothelium-derived hyperpolarizing factor in rat mesenteric and hindlimb circulation in vivo. J Physiol (London) 2002; 542 : 929–37. [Google Scholar]
  40. Nakashima M, Mombouli JV, Taylor AA, Vanhoutte PM. Endothelium-dependent hyperpolarisation caused by bradykinin in human coronary arteries. J Clin Invest 1993; 92 : 2867–71. [Google Scholar]
  41. Vanhoutte PM. Endothelium-derived hyperpolarizing factor. Amsterdam : Harwood Academic Publishers, 1996 : 338 p. [Google Scholar]
  42. Vanhoutte PM. Endothelium-dependent hyperpolarizations. Amsterdam : Harwood Academic Publishers, 1999 : 436 p. [Google Scholar]
  43. Vanhoutte PM. EDHF 2000. London : Taylor and Francis, 2001 : 502 p. [Google Scholar]
  44. Vanhoutte PM. EDHF 2002. London : Taylor and Francis, 2004 (sous presse). [Google Scholar]
  45. Taddei S, Ghiadoni L, Virdis A, Buralli S, Salvetti A. Vasodilatation to bradykinin is mediated by an ouabain-sensitive pathway as a compensatory mechanism for impaired nitric oxide availability inessential hypertensive patients. Circulation 1999; 100 : 1400–5. [Google Scholar]
  46. Thollon C, Bidouard JP, Cambarrat C, et al. Alteration of endothelium-dependent hyperpolarizations in porcine coronary arteries with regenerated endothelium. Circ Res 1999; 84 : 371–7. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.