Accès gratuit
Med Sci (Paris)
Volume 19, Numéro 12, Décembre 2003
Page(s) 1251 - 1258
Section M/S revues
Publié en ligne 15 décembre 2003
  1. Gething MJ. Guidebook to molecular chaperones and protein-folding catalysts. Oxford : Sambrook and Tooze Publication. Oxford University Press, 1997 : 554 p. [Google Scholar]
  2. Ferrari DM, Söling HD. The protein disulphide-isomerase family: unravelling a string of folds. Biochem J 1999; 339 : 1–10. [Google Scholar]
  3. Schmid FX. Prolyl isomerase : enzymatic catalysis of slow protein-folding reactions. Annu Rev Biophys Biomol Struct 1993; 22 : 123–43. [Google Scholar]
  4. Fischer G, Bang H, Mech C. Detection of enzyme catalysis for cis-trans isomerization of peptide bonds using proline containing peptides as substrates. Biochem Biomed Acta 1984; 43 : 1101–12. [Google Scholar]
  5. Dolinski K, Muir S, Cardenas M, Heitman J. All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1997; 94 : 13093–8. [Google Scholar]
  6. Hanes SD, Shank PR, Bostian KA. Sequence and mutational analysis of ESS1, a gene essential for growth in Saccharomyces cerevisiae. Yeast 1989; 5 : 55–72. [Google Scholar]
  7. Rahfeld JU, Rucknagel KP, Schelbert B, et al. Confirmation of the existence of a third family among peptidyl-prolyl cis/trans isomerases. Amino acid sequence and recombinant production of parvulin. FEBS Lett 1994; 352 : 180–4. [Google Scholar]
  8. Hennig L, Christner C, Kipping M, et al. Selective inactivation of parvulin-like peptidyl-prolyl cis/trans isomerases by juglone. Biochemistry 1998; 37 : 5953–60. [Google Scholar]
  9. Lu KP, Hanes SD, Hunter T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 1996; 380 : 544–7. [Google Scholar]
  10. Lu PJ, Zhou XZ, Shen M, Lu KP. Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 1999; 283 : 1325–8. [Google Scholar]
  11. Verdecia MA, Bowman ME, Lu KP, Hunter T, Noel JP. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat Struct Biol 2000; 7 : 639–43. [Google Scholar]
  12. Yaffe MB, Schutkowski M, Shen M, et al. Sequence-specific and phosphorylation-dependent proline isomerization : a potential mitotic regulatory mechanism. Science 1997; 278 : 1957–60. [Google Scholar]
  13. Shen M, Stukenberg PT, Kirschner MW, Lu KP. The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes Dev 1998; 12 : 706–20. [Google Scholar]
  14. Crenshaw DG, Yang J, Means AR, Kornbluth S. The mitotic peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1. Embo J 1998; 17 : 1315–27. [Google Scholar]
  15. Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 1999; 399 : 784–8. [Google Scholar]
  16. Pathan N, Aime-Sempe C, Kitada S, Haldar S, Reed JC. Microtubule-targeting drugs induce Bcl-2 phosphorylation and association with Pin1. Neoplasia 2001; 3 : 70–9. [Google Scholar]
  17. Liu W, Youn HD, Zhou XZ, Lu KP, Liu JO. Binding and regulation of the transcription factor NFAT by the peptidyl prolyl cis-trans isomerase Pin1. FEBS Lett 2001; 496 : 105–8. [Google Scholar]
  18. Wulf GM, Ryo A, Wulf GG, et al. Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J 2001; 20 : 3459–72. [Google Scholar]
  19. Ryo A, Nakamura M, Wulf G, Liou YC, Lu KP. Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. Nat Cell Biol 2001; 3 : 793–801. [Google Scholar]
  20. Liou YC, Ryo A, Huang HK, et al. Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc Natl Acad Sci USA 2002; 99 : 1335–40. [Google Scholar]
  21. Kamimoto T, Zama T, Aoki R, Muro Y, Hagiwara M. Identification of a novel kinesin-related protein, KRMP1, as a target for mitotic peptidyl-prolyl isomerase Pin1. J Biol Chem 2001; 276 : 37520–8. [Google Scholar]
  22. He J, Lau AG, Yaffe MB, Hall RA. Phosphorylation and cell cycle-dependent regulation of Na+/H+ exchanger regulatory factor-1 by Cdc2 kinase. J Biol Chem 2001; 276 : 41559–65. [Google Scholar]
  23. Albert A, Lavoie S, Vincent M. A hyperphosphorylated form of RNA polymerase II is the major interphase antigen of the phosphoprotein antibody MPM-2 and interacts with the peptidyl-prolyl isomerase Pin1. J Cell Sci 1999; 112 : 2493–500. [Google Scholar]
  24. Lavoie SB, Albert AL, Handa H, Vincent M, Bensaude O. The peptidyl-prolyl isomerase Pin1 interacts with hSpt5 phosphorylated by Cdk9. J Mol Biol 2001; 312 : 675–85. [Google Scholar]
  25. Stukenberg PT, Kirschner MW. Pin1 acts catalytically to promote a conformational change in Cdc25. Mol Cell 2001; 7 : 1071–83. [Google Scholar]
  26. Patra D, Wang SX, Kumagai A, Dunphy WG. The xenopus Suc1/Cks protein promotes the phosphorylation of G(2)/M regulators. J Biol Chem 1999; 274 : 36839–42. [Google Scholar]
  27. Lu PJ, Zhou XZ, Liou YC, Noel JP, Lu KP. Critical role of WW domain phosphorylation in regulating phosphoserine binding activity and Pin1 function. J Biol Chem 2002; 277 : 2381–4. [Google Scholar]
  28. Zhou XZ, Kops O, Werner A, et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol Cell 2000; 6 : 873–83. [Google Scholar]
  29. Fujimori F, Takahashi K, Uchida C, Uchida T. Mice lacking Pin1 develop normally, but are defective in entering cell cycle from G(0) arrest. Biochem Biophys Res Commun 1999; 265 : 658–63. [Google Scholar]
  30. Fujimori F, Gunji W, Kikuchi J, et al. Crosstalk of prolyl isomerases, Pin1/Ess1, and cyclophilin A. Biochem Biophys Res Commun 2001; 289 : 181–90. [Google Scholar]
  31. Iqbal K, Alonso AC, Gong CX, et al. Mechanisms of neurofibrillary degeneration and the formation of neurofibrillary tangles. J Neural Tansm 1998; 53 (suppl) : 169–80. [Google Scholar]
  32. Spillantini MG, Goedert M. Tau protein pathology in neurogenerative diseases. Trends Neurosci 1998; 21 : 428–33. [Google Scholar]
  33. Bramblett GT, Goedert M, Jakes R, et al. Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron 1993; 10 : 1089–99. [Google Scholar]
  34. Mandelkow E, Song YH, Schweers O, Marx A, Mandelkow EM. On the structure of microtubules, tau, and paired helical filaments. Neurobiol Aging 1995; 16 : 347–54. [Google Scholar]
  35. Bensaude O, Bellier S, Dubois MF. Le domaine carboxy-terminal (CTD) de l'ARN polymérase II : un pivot du métabolisme des ARN messagers en général et du VIH en particulier. Med Sci 1998; 14 : 167–74. [Google Scholar]
  36. Morris DP, Phatnani HP, Greenleaf AL. Phospho-carboxyl-terminal domain binding and the role of a prolyl isomerase in pre-mRNA 3'-end formation. J Biol Chem 1999; 274 : 31583–7. [Google Scholar]
  37. Winkler KE, Swenson KI, Kornbluth S, Means AR. Requirement of the prolyl isomerase Pin1 for the replication checkpoint. Science 2000; 287 : 1644–7. [Google Scholar]
  38. Zacchi P, Gostissa M, Uchida T, et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 2002; 419 : 853–7. [Google Scholar]
  39. Zheng H, You H, Zhou XZ, et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 2002; 419 : 849–53. [Google Scholar]
  40. Lu KP, Liou YC, Vincent I. Proline-directed phosphorylation and isomerization in mitotic regulation and in Alzheimer’s Disease. BioEssays 2003; 25 : 174–81. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.