Free Access
Med Sci (Paris)
Volume 18, Number 12, Décembre 2002
Page(s) 1267 - 1275
Section M/S Revues : Articles de Synthèse
Published online 15 December 2002
  1. Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science 1982; 216: 136–44. [Google Scholar]
  2. Prusiner SB, Scott MR, Dearmond SJ, Cohen FE. Prion protein biology. Cell 1998; 93: 337–48. [Google Scholar]
  3. Sparkes RS, Simon M, Cohn VH, et al. Assignment of the human and mouse prion protein genes to homologous chromosomes. Proc Natl Acad Sci USA 1986; 83: 7358–62. [Google Scholar]
  4. Manson J, West JD, Thomson V, et al. The prion protein gene: a role in mouse embryogenesis? Development 1992; 115: 117–22. [Google Scholar]
  5. Puckett C, Concannon P, Casey C, Hood L. Genomic structure of the human prion protein gene. Am J Hum Genet 1991; 49: 320–9. [Google Scholar]
  6. Ma J, Lindquist S. Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc Natl Acad Sci USA 2001; 98: 14955–60. [Google Scholar]
  7. Donne DG, Viles JH, Groth D, et al. Structure of the recombinant full-length hamster prion protein PrP (29-231): the N-terminus is highly flexible. Proc Natl Acad Sci USA 1997; 94: 13452–7. [Google Scholar]
  8. Riek R, Hornemann S, Wider G, et al. NMR structure of the mouse prion protein domain PrP (121-231). Nature 1996; 382: 180–2. [Google Scholar]
  9. Hegde RS, Mastrianni JA, Scott MR, et al. A transmembrane form of the prion protein in neurodegenerative disease. Science 1998; 279: 827–34. [Google Scholar]
  10. Stewart RS, Harris DA. Most pathogenic mutations do not alter the membrane topology of the prion protein. J Biol Chem 2001; 276: 2212–20. [Google Scholar]
  11. Hay B, Barry RA, Lieberburg I, Prusiner SB, Lingappa VR. Biogenesis and transmembrane orientation of the cellular isoform of the scrapie prion protein. Mol Cell Biol 1987; 7: 914–20. [Google Scholar]
  12. Hegde RS, Tremblay P, Groth D, et al. Transmissible and genetic prion diseases share acommon pathway of neurodegeneration. Nature 1999; 402: 822–6. [Google Scholar]
  13. Stewart RS, Drisaldi B, Harris DA. Atransmembrane form of the prion protein contains an uncleaved signal peptide and is retained in the endoplasmic reticulum. Mol Biol Cell 2001; 12: 881–9. [Google Scholar]
  14. Kim SJ, Rahbar R, Hegde RS. Combinatorial control of prion protein biogenesis by the signal sequence and transmembrane domain.J Biol Chem 2001; 276: 26132–40. [Google Scholar]
  15. Hegde RS, Voigt S, Lingappa VR. Regulation of protein topology by trans-acting factors at the endoplasmic reticulum. Mol Cell 1998; 2: 85–91. [Google Scholar]
  16. Coux O, Piechaczyk M. Le systèmeubiquitine/protéasome: un ensemble (de) complexe(s) pour dégrader les protéines. Med Sci 2000; 16: 623–9. [Google Scholar]
  17. Zanusso G, Petersen RB, Jin T, et al. Proteasomal degradation and N-terminal protease resistance of the codon 145 mutant prion protein. J Biol Chem 1999; 274: 23396–404. [Google Scholar]
  18. Yedidia Y, Horonchik L, Tzaban S, Yanai A, Taraboulos A. Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein. EMBO J 2001; 20: 5383–91. [Google Scholar]
  19. Pfeifer K, Bachmann M, Schroder HC, Forrest J, Muller WE. Kinetics of expression of prion protein in uninfected and scrapie- infected N2a mouse neuroblastoma cells. Cell Biochem Funct 1993;11 : 1–11. [Google Scholar]
  20. Jaegly A, Mouthon F, Peyrin JM, et al. Search for a nuclear localization signal in the prion protein. Mol Cell Neurosci 1998; 11: 127–33. [Google Scholar]
  21. Rybner C, Finel-Szermanski S, Felin M, et al. The cellular prion protein: a new partner of the lectin CBP70 in the nucleus of NB4 human promyelocytic leukemia cells. J Cell Biochem 2002;84: 408–19. [Google Scholar]
  22. Gilch S, Winklhofer KF, Groschup MH, et al. Intracellular re-routing of prion protein prevents propagation of PrP (Sc) and delays onset of prion disease. EMBO J 2001; 20: 3957–66. [Google Scholar]
  23. Lehmann S, Milhavet O, Mange A. Trafficking of the cellular isoform of the prion protein. Biomed Pharmacother 1999; 53: 39–46. [Google Scholar]
  24. Madore N, Smith KL, Graham CH, et al. Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J 1999; 18: 6917–26. [Google Scholar]
  25. Shyng SL, Heuser JE, Harris DA. A glycolipid-anchored prion protein is endocytosed via clathrin-coated pits. J Cell Biol 1994; 125: 1239–50. [Google Scholar]
  26. Shyng SL, Moulder KL, Lesko A, Harris DA. The N-terminal domain of a glycolipid-anchored prion protein is essential for its endocytosis via clathrin-coated pits. J Biol Chem 1995; 270: 14793–800. [Google Scholar]
  27. Shyng SL, Huber MT, Harris DA. A prion protein cycles between the cell surface and an endocytic compartment in cultured neuroblastoma cells. J Biol Chem 1993; 268: 15922–8. [Google Scholar]
  28. Vincent B, Paitel E, Frobert Y, et al. Phorbol ester-regulated cleavage of normal prion protein in HEK293 human cells and murine neurons. J Biol Chem 2000; 275: 35612–6. [Google Scholar]
  29. Vincent B, Paitel E, Saftig P, et al. The disintegrins ADAM10 and TACE contribute to the constitutive and phorbol ester-regulated normal cleavage of the cellular prion protein. J Biol Chem 2001; 276: 37743–6. [Google Scholar]
  30. Chen SG, Teplow DB, Parchi P, et al. Truncated forms of the human prion protein in normal brain and in prion diseases. J Biol Chem 1995; 270: 19173–80. [Google Scholar]
  31. McMahon HE, Mange A, Nishida N, et al. Cleavage of the amino-terminus of the prion protein by reactive oxygen species. J Biol Chem 2001; 276: 2286–91. [Google Scholar]
  32. Bueler H, Aguzzi A, Sailer A, et al. Mice devoid of PrP are resistant to scrapie. Cell 1993; 73: 1339–47. [Google Scholar]
  33. Bueler H, Fischer M, Lang Y, et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 1992; 356: 577–82. [Google Scholar]
  34. Manson JC, Clarke AR, Hooper ML, et al. 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol 1994; 8: 121–7. [Google Scholar]
  35. Sakaguchi S, Katamine S, Nishida N, et al. Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 1996; 380: 528–31. [Google Scholar]
  36. Moore RC, Lee IY, Silverman GL, et al. Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel. J Mol Biol 1999; 292: 797–817. [Google Scholar]
  37. Hornshaw MP, McDermott JR, Candy JM, Lakey JH. Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem Biophys Res Commun 1995; 214: 993–9. [Google Scholar]
  38. Viles JH, Cohen FE, Prusiner SB, et al. Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc Natl Acad Sci USA 1999; 96: 2042–7. [Google Scholar]
  39. Kramer ML, Kratzin HD, Schmidt B, et al. Prion protein binds copper within the physiological concentration range. J Biol Chem 2001; 276: 16711–9. [Google Scholar]
  40. Jackson GS, Murray I, Hosszu LL, et al. Location and properties of metal-binding sites on the human prion protein. Proc Natl Acad Sci USA 2001; 3 : 3. [Google Scholar]
  41. Brown DR, Qin K, Herms JW, et al. The cellular prion protein binds copper in vivo. Nature 1997; 390: 684–7. [Google Scholar]
  42. Pauly PC, Harris DA. Copper stimulates endocytosis of the prion protein. J Biol Chem 1998; 273: 33107–10. [Google Scholar]
  43. Waggoner DJ, Drisaldi B, Bartnikas TB, et al. Brain copper content and cuproenzyme activity do not vary with prion protein expression level. J Biol Chem 2000; 275: 7455–8. [Google Scholar]
  44. Brown DR, Besinger A. Prion protein expression and superoxide dismutase activity. Biochem J 1998; 334: 423–9. [Google Scholar]
  45. Brown DR, Wong BS, Hafiz F, et al. Normal prion protein has an activity like that of superoxide dismutase. Biochem J 1999; 344: 1–5. [Google Scholar]
  46. Milhavet O, McMahon HE, Rachidi W, et al. Prion infection impairs the cellular response to oxidative stress. Proc Natl Acad Sci USA 2000; 97: 13937–42. [Google Scholar]
  47. Gabus C, Derrington E, Leblanc P, et al. The prion protein has RNA binding and chaperoning properties characteristic of nucleocapsid protein NCP7 of HIV-1. J Biol Chem 2001; 276: 19301–9. [Google Scholar]
  48. Gauczynski S, Peyrin JM, Haik S, et al. The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J 2001; 20: 5863–75. [Google Scholar]
  49. Mouillet-Richard S, Ermonval M, Chebassier C, et al. Signal transduction through prion protein. Science 2000; 289: 1925–8. [Google Scholar]
  50. Ostlund P, Lindegren H, Pettersson C, Bedecs K. Altered insulin receptor processing and function in scrapie-infected neuroblastoma cell lines. Brain Res Mol Brain Res 2001; 97: 161–70. [Google Scholar]
  51. Lee IY, Westaway D, Smit AF,et al. Complete genomic sequence and analysis of the prion protein gene region from three mammalian species. Genome Res 1998; 8: 1022–37. [Google Scholar]
  52. Baybutt H, Manson J. Characterisation of two promoters for prion protein (PrP) gene expression in neuronal cells. Gene 1997; 184: 125–31. [Google Scholar]
  53. Martins VR, Graner E, Garcia-Abreu J, et al. Complementary hydropathy identifies a cellular prion protein receptor. Nat Med 1997; 3: 1376–82. [Google Scholar]
  54. Yehiely F, Bamborough P, Da Costa M, et al. Identification of candidate proteins binding to prion protein. Neurobiol Dis 1997; 3: 339–55. [Google Scholar]
  55. Kurschner C, Morgan JL. The cellular prion protein (PrP) selectively binds to Bcl-2 in the yeast two-hybrid system Brain Res Mol Brain Res 1995; 30: 165–8 [Google Scholar]
  56. Oesch B, Teplow DB, Stahl N, et al. Identification of cellular proteins binding to the scrapie prion protein. Biochemistry 1990; 29 : 5848–55. [Google Scholar]
  57. Spielhaupter C, Schatzl HM. PrPC directly interacts with proteins involved in signaling pathways. J Biol Chem 2001; 276: 44604–12. [Google Scholar]
  58. Edenhofer F, Rieger R, Famulok M, Wendler W, Weiss S, Winnacker EL. Prion protein PrPc interacts with molecular chaperones of the Hsp60 family. J Virol 1996; 70: 4724–8. [Google Scholar]
  59. Graner E, Mercadante AF, Zanata SM, et al. Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res Mol Brain Res 2000; 76: 85–92. [Google Scholar]
  60. Rieger R, Edenhofer F, Lasmezas CI, Weiss S. The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat Med 1997; 3 : 1383–8. [Google Scholar]
  61. Schmitt-Ulms G, Legname G, Baldwin MA, et al. Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J Mol Biol 2001; 314: 1209–25 [Google Scholar]
  62. Fischer MB, Roeckl C, Parisek P, et al. Binding of disease-associated prion protein to plasminogen. Nature 2000; 408 : 479–83. [Google Scholar]
  63. Weiss S, Proske D, Neumann M, et al. RNA aptamers specifically interact with the prion protein PrP. J Virol 1997; 71 : 8790–7. [Google Scholar]
  64. Ma J, Lindquist S. Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science 2002 (online). [Google Scholar]
  65. Ma J, Wollmann R, Lindquist S. Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 2002 (online). [Google Scholar]
  66. Beranger F, Mangé A, Goud B, Lehmann S. Stimulation of PrPC retrograde transport toward the endoplasmic reticulum increases accumulation of PrPSc in prion-infected cells. J Biol Chem 2002; 277 : 38972–7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.