Accès gratuit
Med Sci (Paris)
Volume 18, Numéro 12, Décembre 2002
Page(s) 1267 - 1275
Section M/S Revues : Articles de Synthèse
Publié en ligne 15 décembre 2002
  1. Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science 1982; 216: 136–44. [Google Scholar]
  2. Prusiner SB, Scott MR, Dearmond SJ, Cohen FE. Prion protein biology. Cell 1998; 93: 337–48. [Google Scholar]
  3. Sparkes RS, Simon M, Cohn VH, et al. Assignment of the human and mouse prion protein genes to homologous chromosomes. Proc Natl Acad Sci USA 1986; 83: 7358–62. [Google Scholar]
  4. Manson J, West JD, Thomson V, et al. The prion protein gene: a role in mouse embryogenesis? Development 1992; 115: 117–22. [Google Scholar]
  5. Puckett C, Concannon P, Casey C, Hood L. Genomic structure of the human prion protein gene. Am J Hum Genet 1991; 49: 320–9. [Google Scholar]
  6. Ma J, Lindquist S. Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc Natl Acad Sci USA 2001; 98: 14955–60. [Google Scholar]
  7. Donne DG, Viles JH, Groth D, et al. Structure of the recombinant full-length hamster prion protein PrP (29-231): the N-terminus is highly flexible. Proc Natl Acad Sci USA 1997; 94: 13452–7. [Google Scholar]
  8. Riek R, Hornemann S, Wider G, et al. NMR structure of the mouse prion protein domain PrP (121-231). Nature 1996; 382: 180–2. [Google Scholar]
  9. Hegde RS, Mastrianni JA, Scott MR, et al. A transmembrane form of the prion protein in neurodegenerative disease. Science 1998; 279: 827–34. [Google Scholar]
  10. Stewart RS, Harris DA. Most pathogenic mutations do not alter the membrane topology of the prion protein. J Biol Chem 2001; 276: 2212–20. [Google Scholar]
  11. Hay B, Barry RA, Lieberburg I, Prusiner SB, Lingappa VR. Biogenesis and transmembrane orientation of the cellular isoform of the scrapie prion protein. Mol Cell Biol 1987; 7: 914–20. [Google Scholar]
  12. Hegde RS, Tremblay P, Groth D, et al. Transmissible and genetic prion diseases share acommon pathway of neurodegeneration. Nature 1999; 402: 822–6. [Google Scholar]
  13. Stewart RS, Drisaldi B, Harris DA. Atransmembrane form of the prion protein contains an uncleaved signal peptide and is retained in the endoplasmic reticulum. Mol Biol Cell 2001; 12: 881–9. [Google Scholar]
  14. Kim SJ, Rahbar R, Hegde RS. Combinatorial control of prion protein biogenesis by the signal sequence and transmembrane domain.J Biol Chem 2001; 276: 26132–40. [Google Scholar]
  15. Hegde RS, Voigt S, Lingappa VR. Regulation of protein topology by trans-acting factors at the endoplasmic reticulum. Mol Cell 1998; 2: 85–91. [Google Scholar]
  16. Coux O, Piechaczyk M. Le systèmeubiquitine/protéasome: un ensemble (de) complexe(s) pour dégrader les protéines. Med Sci 2000; 16: 623–9. [Google Scholar]
  17. Zanusso G, Petersen RB, Jin T, et al. Proteasomal degradation and N-terminal protease resistance of the codon 145 mutant prion protein. J Biol Chem 1999; 274: 23396–404. [Google Scholar]
  18. Yedidia Y, Horonchik L, Tzaban S, Yanai A, Taraboulos A. Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein. EMBO J 2001; 20: 5383–91. [Google Scholar]
  19. Pfeifer K, Bachmann M, Schroder HC, Forrest J, Muller WE. Kinetics of expression of prion protein in uninfected and scrapie- infected N2a mouse neuroblastoma cells. Cell Biochem Funct 1993;11 : 1–11. [Google Scholar]
  20. Jaegly A, Mouthon F, Peyrin JM, et al. Search for a nuclear localization signal in the prion protein. Mol Cell Neurosci 1998; 11: 127–33. [Google Scholar]
  21. Rybner C, Finel-Szermanski S, Felin M, et al. The cellular prion protein: a new partner of the lectin CBP70 in the nucleus of NB4 human promyelocytic leukemia cells. J Cell Biochem 2002;84: 408–19. [Google Scholar]
  22. Gilch S, Winklhofer KF, Groschup MH, et al. Intracellular re-routing of prion protein prevents propagation of PrP (Sc) and delays onset of prion disease. EMBO J 2001; 20: 3957–66. [Google Scholar]
  23. Lehmann S, Milhavet O, Mange A. Trafficking of the cellular isoform of the prion protein. Biomed Pharmacother 1999; 53: 39–46. [Google Scholar]
  24. Madore N, Smith KL, Graham CH, et al. Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J 1999; 18: 6917–26. [Google Scholar]
  25. Shyng SL, Heuser JE, Harris DA. A glycolipid-anchored prion protein is endocytosed via clathrin-coated pits. J Cell Biol 1994; 125: 1239–50. [Google Scholar]
  26. Shyng SL, Moulder KL, Lesko A, Harris DA. The N-terminal domain of a glycolipid-anchored prion protein is essential for its endocytosis via clathrin-coated pits. J Biol Chem 1995; 270: 14793–800. [Google Scholar]
  27. Shyng SL, Huber MT, Harris DA. A prion protein cycles between the cell surface and an endocytic compartment in cultured neuroblastoma cells. J Biol Chem 1993; 268: 15922–8. [Google Scholar]
  28. Vincent B, Paitel E, Frobert Y, et al. Phorbol ester-regulated cleavage of normal prion protein in HEK293 human cells and murine neurons. J Biol Chem 2000; 275: 35612–6. [Google Scholar]
  29. Vincent B, Paitel E, Saftig P, et al. The disintegrins ADAM10 and TACE contribute to the constitutive and phorbol ester-regulated normal cleavage of the cellular prion protein. J Biol Chem 2001; 276: 37743–6. [Google Scholar]
  30. Chen SG, Teplow DB, Parchi P, et al. Truncated forms of the human prion protein in normal brain and in prion diseases. J Biol Chem 1995; 270: 19173–80. [Google Scholar]
  31. McMahon HE, Mange A, Nishida N, et al. Cleavage of the amino-terminus of the prion protein by reactive oxygen species. J Biol Chem 2001; 276: 2286–91. [Google Scholar]
  32. Bueler H, Aguzzi A, Sailer A, et al. Mice devoid of PrP are resistant to scrapie. Cell 1993; 73: 1339–47. [Google Scholar]
  33. Bueler H, Fischer M, Lang Y, et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 1992; 356: 577–82. [Google Scholar]
  34. Manson JC, Clarke AR, Hooper ML, et al. 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol 1994; 8: 121–7. [Google Scholar]
  35. Sakaguchi S, Katamine S, Nishida N, et al. Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 1996; 380: 528–31. [Google Scholar]
  36. Moore RC, Lee IY, Silverman GL, et al. Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel. J Mol Biol 1999; 292: 797–817. [Google Scholar]
  37. Hornshaw MP, McDermott JR, Candy JM, Lakey JH. Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem Biophys Res Commun 1995; 214: 993–9. [Google Scholar]
  38. Viles JH, Cohen FE, Prusiner SB, et al. Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc Natl Acad Sci USA 1999; 96: 2042–7. [Google Scholar]
  39. Kramer ML, Kratzin HD, Schmidt B, et al. Prion protein binds copper within the physiological concentration range. J Biol Chem 2001; 276: 16711–9. [Google Scholar]
  40. Jackson GS, Murray I, Hosszu LL, et al. Location and properties of metal-binding sites on the human prion protein. Proc Natl Acad Sci USA 2001; 3 : 3. [Google Scholar]
  41. Brown DR, Qin K, Herms JW, et al. The cellular prion protein binds copper in vivo. Nature 1997; 390: 684–7. [Google Scholar]
  42. Pauly PC, Harris DA. Copper stimulates endocytosis of the prion protein. J Biol Chem 1998; 273: 33107–10. [Google Scholar]
  43. Waggoner DJ, Drisaldi B, Bartnikas TB, et al. Brain copper content and cuproenzyme activity do not vary with prion protein expression level. J Biol Chem 2000; 275: 7455–8. [Google Scholar]
  44. Brown DR, Besinger A. Prion protein expression and superoxide dismutase activity. Biochem J 1998; 334: 423–9. [Google Scholar]
  45. Brown DR, Wong BS, Hafiz F, et al. Normal prion protein has an activity like that of superoxide dismutase. Biochem J 1999; 344: 1–5. [Google Scholar]
  46. Milhavet O, McMahon HE, Rachidi W, et al. Prion infection impairs the cellular response to oxidative stress. Proc Natl Acad Sci USA 2000; 97: 13937–42. [Google Scholar]
  47. Gabus C, Derrington E, Leblanc P, et al. The prion protein has RNA binding and chaperoning properties characteristic of nucleocapsid protein NCP7 of HIV-1. J Biol Chem 2001; 276: 19301–9. [Google Scholar]
  48. Gauczynski S, Peyrin JM, Haik S, et al. The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J 2001; 20: 5863–75. [Google Scholar]
  49. Mouillet-Richard S, Ermonval M, Chebassier C, et al. Signal transduction through prion protein. Science 2000; 289: 1925–8. [Google Scholar]
  50. Ostlund P, Lindegren H, Pettersson C, Bedecs K. Altered insulin receptor processing and function in scrapie-infected neuroblastoma cell lines. Brain Res Mol Brain Res 2001; 97: 161–70. [Google Scholar]
  51. Lee IY, Westaway D, Smit AF,et al. Complete genomic sequence and analysis of the prion protein gene region from three mammalian species. Genome Res 1998; 8: 1022–37. [Google Scholar]
  52. Baybutt H, Manson J. Characterisation of two promoters for prion protein (PrP) gene expression in neuronal cells. Gene 1997; 184: 125–31. [Google Scholar]
  53. Martins VR, Graner E, Garcia-Abreu J, et al. Complementary hydropathy identifies a cellular prion protein receptor. Nat Med 1997; 3: 1376–82. [Google Scholar]
  54. Yehiely F, Bamborough P, Da Costa M, et al. Identification of candidate proteins binding to prion protein. Neurobiol Dis 1997; 3: 339–55. [Google Scholar]
  55. Kurschner C, Morgan JL. The cellular prion protein (PrP) selectively binds to Bcl-2 in the yeast two-hybrid system Brain Res Mol Brain Res 1995; 30: 165–8 [Google Scholar]
  56. Oesch B, Teplow DB, Stahl N, et al. Identification of cellular proteins binding to the scrapie prion protein. Biochemistry 1990; 29 : 5848–55. [Google Scholar]
  57. Spielhaupter C, Schatzl HM. PrPC directly interacts with proteins involved in signaling pathways. J Biol Chem 2001; 276: 44604–12. [Google Scholar]
  58. Edenhofer F, Rieger R, Famulok M, Wendler W, Weiss S, Winnacker EL. Prion protein PrPc interacts with molecular chaperones of the Hsp60 family. J Virol 1996; 70: 4724–8. [Google Scholar]
  59. Graner E, Mercadante AF, Zanata SM, et al. Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res Mol Brain Res 2000; 76: 85–92. [Google Scholar]
  60. Rieger R, Edenhofer F, Lasmezas CI, Weiss S. The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat Med 1997; 3 : 1383–8. [Google Scholar]
  61. Schmitt-Ulms G, Legname G, Baldwin MA, et al. Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J Mol Biol 2001; 314: 1209–25 [Google Scholar]
  62. Fischer MB, Roeckl C, Parisek P, et al. Binding of disease-associated prion protein to plasminogen. Nature 2000; 408 : 479–83. [Google Scholar]
  63. Weiss S, Proske D, Neumann M, et al. RNA aptamers specifically interact with the prion protein PrP. J Virol 1997; 71 : 8790–7. [Google Scholar]
  64. Ma J, Lindquist S. Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science 2002 (online). [Google Scholar]
  65. Ma J, Wollmann R, Lindquist S. Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 2002 (online). [Google Scholar]
  66. Beranger F, Mangé A, Goud B, Lehmann S. Stimulation of PrPC retrograde transport toward the endoplasmic reticulum increases accumulation of PrPSc in prion-infected cells. J Biol Chem 2002; 277 : 38972–7. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.