Free Access
Issue |
Med Sci (Paris)
Volume 18, Number 8-9, Août–Septembre 2002
|
|
---|---|---|
Page(s) | 861 - 873 | |
Section | M/S Revues : Articles De Synthèse | |
DOI | https://doi.org/10.1051/medsci/20021889861 | |
Published online | 15 August 2002 |
- Rieux-Laucat F, Blachere S, Danielan S, et al. Lymphoproliferative syndrome with autoimmunity: a possible genetic basis for dominant expression of the clinical manifestations. Blood 1999; 94 : 2575–82. [Google Scholar]
- Nagata S. Human autoimmune lymphoproliferative syndrome, a defect in the apoptosis-inducing Fas receptor: a lesson from the mouse model. J Hum Genet 1998; 43 : 2–8. [Google Scholar]
- Rieux-Laucat F, Le Deist F, Hivroz C, et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoim-munity. Science 1995;268 : 1347–9. [Google Scholar]
- Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz JD. Fas ligand mutation in a patient with systemic lupus erythematous and lymphoproliferative disease. J Clin Invest 1996; 98 : 1107–13. [Google Scholar]
- Wang J, Zheng L, Lobito A, et al. Inherited human caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 1999; 98 : 47–58. [Google Scholar]
- Ramenghi U, Bonissoni S, Migliaretti G, et al. Deficiency of the Fas apoptosis pathway without Fas gene mutations is a familial trait predisposing to development of autoimmune diseases and cancer. Blood 2000; 95 : 3176–82. [Google Scholar]
- Budd RC. Activation-induced cell death. Curr Opin Immunol 2001; 13 : 356–62. [Google Scholar]
- Zhang J, Cado D, Chen A, Kabra NH, Winoto A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/MORT1. Nature 1998; 392 : 296–300. [Google Scholar]
- Stepp SE, Dufourcq-Lagelouse R, Le Deist F, et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 1999; 286 : 1957–9. [Google Scholar]
- The French FMF Consortium. A candidate gene for familial Mediterranean fever. Nat Genet 1997; 17 : 25–31. [Google Scholar]
- Martinon F, Hofmanndouble-Dagger K, Tschopp J. The pyrin domain: a possible member of the death domain-fold family implicated in apoptosis and inflammation. Curr Biol 2001; 11 : R118–20. [Google Scholar]
- McDermott MF, Aksentijevich I, Galon J, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 1999; 97 : 133–44. [Google Scholar]
- Aradhya S, Woffendin H, Jakins T, et al. A recurrent deletion in the ubiquitously expressed NEMO (IKK-gamma) gene accounts for the vast majority of incontinentia pigmenti mutations. Hum Mol Genet 2001; 10 : 2171–9. [Google Scholar]
- Aradhya S, Nelson DL. NF-kappaB signaling and human disease. Curr Opin Genet Dev 2001; 11 : 300–6. [Google Scholar]
- Gendron NH, MacKenzie AE. Spinal muscular atrophy: molecular pathophysiology. Curr Opin Neurol 1999; 12 : 137–42. [Google Scholar]
- Burghes AH, Vaessin HE, de la Chapelle A. The land between Mendelian and multifactorial inheritance. Science 2001; 293 : 2213–4. [Google Scholar]
- Verhagen AM, Coulson EJ, Vaux DL. Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol 2001; 2 : 3009. [Google Scholar]
- Roy N, Mahadevan MS, McLean M, et al. The gene for neuronal apoptosis inhibitory protein ispartially deleted in individuals with spinal muscular atrophy. Cell 1995; 80 : 167–78. [Google Scholar]
- Holcik M, Thompson CS, Yaraghi Z, Lefebvre CA, MacKenzie AE, Korneluk RG. The hippocampal neurons of neuronal apoptosis inhibitory protein 1 (NAIP1)-deleted mice display increased vulnerability to kainic acid-induced injury. Proc Natl Acad Sci USA2000; 97 : 2286–90. [Google Scholar]
- Xu DG, Crocker SJ, Doucet JP, et al. Elevation of neuronal expression of NAIP reduces ischemic damage in the rat hippocampus. Nat Med 1997; 3 : 997–1004. [Google Scholar]
- Campuzano V, Montermini L, Molto MD, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996; 271 : 1423–7. [Google Scholar]
- Santos MM, Ohshima K, Pandolfo M. Frataxin deficiency enhances apoptosis in cells differentiating into neuroectoderm. Hum Mol Genet 2001; 10 : 1935–44. [Google Scholar]
- Gervais FG, Singaraja R, Xanthoudakis S, et al. Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nat Cell Biol 2002; 4 : 95–105. [Google Scholar]
- Chen M, Ona VO, Li M, et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 2000; 6 : 797–801. [Google Scholar]
- Vousden KH. p53: death star. Cell 2000; 103 : 691–4. [Google Scholar]
- Dubrez L, Coll JL, Hurbin A, Solary E, Favrot MC. Caffeine sensitizes human H358 cell line to p53-mediated apoptosis by inducing mitochondrial translocation and conformational change of BAX Protein. J Biol Chem2001; 276 : 38980–7. [Google Scholar]
- Rampino N, Yamamoto H, Ionov Y, et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 1997; 275 : 967–9. [Google Scholar]
- Molenaar JJ, Gerard B, Chambon-Pautas C, et al. Microsatellite instability and frameshift mutations in BAX and transforming growth factor-beta RII genes are very uncommon in acute lymphoblastic leukemia in vivo but not in cell lines. Blood 1998; 92 : 230–3. [Google Scholar]
- Jones PA. Death and methylation. Nature 2001; 409 : 141–4 [Google Scholar]
- Meijerink JP, Mensink EJ, Wang K, et al.Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood 1998; 91 : 2991–7. [Google Scholar]
- Kondo S, Shinomura Y, Miyazaki Y, et al. Mutations of the bak gene in human gastric and colorectal cancers. Cancer Res 2000; 60 : 4328–30. [Google Scholar]
- Chao DT, Korsmeyer SJ. Bcl-2 family: regulators of cell death. Annu Rev Immunol1998; 16 : 395–419. [Google Scholar]
- Cory S, Vaux DL, Strasser A, Harris AW, Adams JM. Insights from Bcl-2 and Myc: malignancy involves abrogation of apoptosis as well as sustained proliferation. Cancer Res1999; 59 : 1685s–92. [Google Scholar]
- Bonnotte B, Favre N, Moutet M, et al. Bcl-2-mediated inhibition of apoptosis prevents immunogenicity and restores tumorigenicity of spontaneously regressive tumors. J Immunol 1998; 161 : 1433–8. [Google Scholar]
- Garrido C, Fromentin A, Bonnotte B, et al. Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones. Cancer Res 1998; 58 : 5495–9. [Google Scholar]
- Uren AG, O’ Rourke K, Aravind LA, et al. Identification ofparacaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 2000; 6 : 961–7. [Google Scholar]
- Zhang Q, Siebert R, Yan M, et al. Inactivating mutations and overexpression of Bcl10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nat Genet 1999; 22 : 63–8. [Google Scholar]
- Liu H, Ye H, Dogan A, et al. T(11;18)(q21;q21) is associated with advanced mucosa-associated lymphoid tissue lymphoma that expresses nuclear Bcl10. Blood 2001; 98 : 1182–7. [Google Scholar]
- Rozenfeld-Granot G, Toren A, Amariglio N, Brok-Simoni F, Rechavi G. Mutation analysis of the FAS and TNFR apoptotic cascade genes inhematological malignancies. Exp Hematol 2001; 29 : 228–33 [Google Scholar]
- Shin MS, Kim HS, Lee SH, et al. Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Res 2001; 61 : 4942–6. [Google Scholar]
- Teitz T, Wei T, Valentine MB, et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 2000; 6 : 529–35. [Google Scholar]
- Micheau O, Solary E, Hammann A, Dimanche-Boitrel MT. Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. J Biol Chem 1999; 274 : 7987–92. [Google Scholar]
- Soengas MS, Capodieci P, Polsky D, et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 2001; 409 : 207–11. [Google Scholar]
- Moroni MC, Hickman ES, Denchi EL, et al. Apaf-1 is a transcriptional target for E2F and p53. Nat Cell Biol 2001; 3 : 552–8. [Google Scholar]
- Cohen O, Kimchi A. DAP-kinase: from functional gene cloning to establishment of its role in apoptosis and cancer. Cell Death Differ 2001; 8 : 6–15. [Google Scholar]
- McConnell BB, Vertino PM. Activation of a caspase-9-mediated apoptotic pathway by subcellular redistribution of the novel caspase recruitment domain protein TMS1. Cancer Res 2000; 60 : 6243–7. [Google Scholar]
- Zhu WG, Lakshmanan RR, Beal MD, Otterson GA. DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors. Cancer Res 2001; 61 : 1327–33. [Google Scholar]
- Komarov PG, Komarova EA, Kondratov RV, et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 1999; 285 : 1733–7. [Google Scholar]
- Nicholson DW. From bench to clinic with apoptosis-based therapeutic agents. Nature 2000; 407 : 810–6. [Google Scholar]
- Sordet O, Rebe C, Leroy I, et al. Mitochondria-targeting drugs arsenic trioxide and ionidamine bypass the resistance of TPA-differentiated leukemic cells to apoptosis. Blood 2001; 97 : 3931–40. [Google Scholar]
- Tzung SP, Kim KM, Basanez G, et al. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol 2001; 3 : 183–91 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.