Accès gratuit
Med Sci (Paris)
Volume 18, Numéro 8-9, Août–Septembre 2002
Page(s) 861 - 873
Section M/S Revues : Articles De Synthèse
Publié en ligne 15 août 2002
  1. Rieux-Laucat F, Blachere S, Danielan S, et al. Lymphoproliferative syndrome with autoimmunity: a possible genetic basis for dominant expression of the clinical manifestations. Blood 1999; 94 : 2575–82. [Google Scholar]
  2. Nagata S. Human autoimmune lymphoproliferative syndrome, a defect in the apoptosis-inducing Fas receptor: a lesson from the mouse model. J Hum Genet 1998; 43 : 2–8. [Google Scholar]
  3. Rieux-Laucat F, Le Deist F, Hivroz C, et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoim-munity. Science 1995;268 : 1347–9. [Google Scholar]
  4. Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz JD. Fas ligand mutation in a patient with systemic lupus erythematous and lymphoproliferative disease. J Clin Invest 1996; 98 : 1107–13. [Google Scholar]
  5. Wang J, Zheng L, Lobito A, et al. Inherited human caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 1999; 98 : 47–58. [Google Scholar]
  6. Ramenghi U, Bonissoni S, Migliaretti G, et al. Deficiency of the Fas apoptosis pathway without Fas gene mutations is a familial trait predisposing to development of autoimmune diseases and cancer. Blood 2000; 95 : 3176–82. [Google Scholar]
  7. Budd RC. Activation-induced cell death. Curr Opin Immunol 2001; 13 : 356–62. [Google Scholar]
  8. Zhang J, Cado D, Chen A, Kabra NH, Winoto A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/MORT1. Nature 1998; 392 : 296–300. [Google Scholar]
  9. Stepp SE, Dufourcq-Lagelouse R, Le Deist F, et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 1999; 286 : 1957–9. [Google Scholar]
  10. The French FMF Consortium. A candidate gene for familial Mediterranean fever. Nat Genet 1997; 17 : 25–31. [Google Scholar]
  11. Martinon F, Hofmanndouble-Dagger K, Tschopp J. The pyrin domain: a possible member of the death domain-fold family implicated in apoptosis and inflammation. Curr Biol 2001; 11 : R118–20. [Google Scholar]
  12. McDermott MF, Aksentijevich I, Galon J, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 1999; 97 : 133–44. [Google Scholar]
  13. Aradhya S, Woffendin H, Jakins T, et al. A recurrent deletion in the ubiquitously expressed NEMO (IKK-gamma) gene accounts for the vast majority of incontinentia pigmenti mutations. Hum Mol Genet 2001; 10 : 2171–9. [Google Scholar]
  14. Aradhya S, Nelson DL. NF-kappaB signaling and human disease. Curr Opin Genet Dev 2001; 11 : 300–6. [Google Scholar]
  15. Gendron NH, MacKenzie AE. Spinal muscular atrophy: molecular pathophysiology. Curr Opin Neurol 1999; 12 : 137–42. [Google Scholar]
  16. Burghes AH, Vaessin HE, de la Chapelle A. The land between Mendelian and multifactorial inheritance. Science 2001; 293 : 2213–4. [Google Scholar]
  17. Verhagen AM, Coulson EJ, Vaux DL. Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol 2001; 2 : 3009. [Google Scholar]
  18. Roy N, Mahadevan MS, McLean M, et al. The gene for neuronal apoptosis inhibitory protein ispartially deleted in individuals with spinal muscular atrophy. Cell 1995; 80 : 167–78. [Google Scholar]
  19. Holcik M, Thompson CS, Yaraghi Z, Lefebvre CA, MacKenzie AE, Korneluk RG. The hippocampal neurons of neuronal apoptosis inhibitory protein 1 (NAIP1)-deleted mice display increased vulnerability to kainic acid-induced injury. Proc Natl Acad Sci USA2000; 97 : 2286–90. [Google Scholar]
  20. Xu DG, Crocker SJ, Doucet JP, et al. Elevation of neuronal expression of NAIP reduces ischemic damage in the rat hippocampus. Nat Med 1997; 3 : 997–1004. [Google Scholar]
  21. Campuzano V, Montermini L, Molto MD, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996; 271 : 1423–7. [Google Scholar]
  22. Santos MM, Ohshima K, Pandolfo M. Frataxin deficiency enhances apoptosis in cells differentiating into neuroectoderm. Hum Mol Genet 2001; 10 : 1935–44. [Google Scholar]
  23. Gervais FG, Singaraja R, Xanthoudakis S, et al. Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nat Cell Biol 2002; 4 : 95–105. [Google Scholar]
  24. Chen M, Ona VO, Li M, et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 2000; 6 : 797–801. [Google Scholar]
  25. Vousden KH. p53: death star. Cell 2000; 103 : 691–4. [Google Scholar]
  26. Dubrez L, Coll JL, Hurbin A, Solary E, Favrot MC. Caffeine sensitizes human H358 cell line to p53-mediated apoptosis by inducing mitochondrial translocation and conformational change of BAX Protein. J Biol Chem2001; 276 : 38980–7. [Google Scholar]
  27. Rampino N, Yamamoto H, Ionov Y, et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 1997; 275 : 967–9. [Google Scholar]
  28. Molenaar JJ, Gerard B, Chambon-Pautas C, et al. Microsatellite instability and frameshift mutations in BAX and transforming growth factor-beta RII genes are very uncommon in acute lymphoblastic leukemia in vivo but not in cell lines. Blood 1998; 92 : 230–3. [Google Scholar]
  29. Jones PA. Death and methylation. Nature 2001; 409 : 141–4 [Google Scholar]
  30. Meijerink JP, Mensink EJ, Wang K, et al.Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood 1998; 91 : 2991–7. [Google Scholar]
  31. Kondo S, Shinomura Y, Miyazaki Y, et al. Mutations of the bak gene in human gastric and colorectal cancers. Cancer Res 2000; 60 : 4328–30. [Google Scholar]
  32. Chao DT, Korsmeyer SJ. Bcl-2 family: regulators of cell death. Annu Rev Immunol1998; 16 : 395–419. [Google Scholar]
  33. Cory S, Vaux DL, Strasser A, Harris AW, Adams JM. Insights from Bcl-2 and Myc: malignancy involves abrogation of apoptosis as well as sustained proliferation. Cancer Res1999; 59 : 1685s–92. [Google Scholar]
  34. Bonnotte B, Favre N, Moutet M, et al. Bcl-2-mediated inhibition of apoptosis prevents immunogenicity and restores tumorigenicity of spontaneously regressive tumors. J Immunol 1998; 161 : 1433–8. [Google Scholar]
  35. Garrido C, Fromentin A, Bonnotte B, et al. Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones. Cancer Res 1998; 58 : 5495–9. [Google Scholar]
  36. Uren AG, O’ Rourke K, Aravind LA, et al. Identification ofparacaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 2000; 6 : 961–7. [Google Scholar]
  37. Zhang Q, Siebert R, Yan M, et al. Inactivating mutations and overexpression of Bcl10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nat Genet 1999; 22 : 63–8. [Google Scholar]
  38. Liu H, Ye H, Dogan A, et al. T(11;18)(q21;q21) is associated with advanced mucosa-associated lymphoid tissue lymphoma that expresses nuclear Bcl10. Blood 2001; 98 : 1182–7. [Google Scholar]
  39. Rozenfeld-Granot G, Toren A, Amariglio N, Brok-Simoni F, Rechavi G. Mutation analysis of the FAS and TNFR apoptotic cascade genes inhematological malignancies. Exp Hematol 2001; 29 : 228–33 [Google Scholar]
  40. Shin MS, Kim HS, Lee SH, et al. Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Res 2001; 61 : 4942–6. [Google Scholar]
  41. Teitz T, Wei T, Valentine MB, et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 2000; 6 : 529–35. [Google Scholar]
  42. Micheau O, Solary E, Hammann A, Dimanche-Boitrel MT. Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. J Biol Chem 1999; 274 : 7987–92. [Google Scholar]
  43. Soengas MS, Capodieci P, Polsky D, et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 2001; 409 : 207–11. [Google Scholar]
  44. Moroni MC, Hickman ES, Denchi EL, et al. Apaf-1 is a transcriptional target for E2F and p53. Nat Cell Biol 2001; 3 : 552–8. [Google Scholar]
  45. Cohen O, Kimchi A. DAP-kinase: from functional gene cloning to establishment of its role in apoptosis and cancer. Cell Death Differ 2001; 8 : 6–15. [Google Scholar]
  46. McConnell BB, Vertino PM. Activation of a caspase-9-mediated apoptotic pathway by subcellular redistribution of the novel caspase recruitment domain protein TMS1. Cancer Res 2000; 60 : 6243–7. [Google Scholar]
  47. Zhu WG, Lakshmanan RR, Beal MD, Otterson GA. DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors. Cancer Res 2001; 61 : 1327–33. [Google Scholar]
  48. Komarov PG, Komarova EA, Kondratov RV, et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 1999; 285 : 1733–7. [Google Scholar]
  49. Nicholson DW. From bench to clinic with apoptosis-based therapeutic agents. Nature 2000; 407 : 810–6. [Google Scholar]
  50. Sordet O, Rebe C, Leroy I, et al. Mitochondria-targeting drugs arsenic trioxide and ionidamine bypass the resistance of TPA-differentiated leukemic cells to apoptosis. Blood 2001; 97 : 3931–40. [Google Scholar]
  51. Tzung SP, Kim KM, Basanez G, et al. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol 2001; 3 : 183–91 [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.