Free Access
Med Sci (Paris)
Volume 18, Number 8-9, Août–Septembre 2002
Page(s) 841 - 852
Section M/S Revues : Articles De Synthèse
Published online 15 August 2002
  1. Vogt C. Untersuchungen über die Entwicklungsgeschichte der Geburtshelferkröte (Alytes obstreticans). Solothurn 1842. [Google Scholar]
  2. Kerr JF, Wyllie AH, Currie AR. Apoptosis : a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26 : 239–57. [Google Scholar]
  3. Wyllie AH, Golstein P. More than one way to go. Proc Natl Acad Sci USA 2001; 98 : 11–3. [Google Scholar]
  4. Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2001; 2 : 589–98. [Google Scholar]
  5. Horvitz HR. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res 1999; 59 (suppl) : 1701–6. [Google Scholar]
  6. Yuan J, Shaham S, Ledoux S, Ellis H, Horvitz H. The C. elegans cell-death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta converting enzyme. Cell 1993; 75 : 641–52. [Google Scholar]
  7. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Biol 1999; 15 : 269–90. [Google Scholar]
  8. Thornberry NA, Lazebnik Y. Caspases : enemies within. Science 1998; 281 : 1312–6. [Google Scholar]
  9. Marzo I, Brenner C, Zamzami N, et al. The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med 1998; 187 : 1261–71. [Google Scholar]
  10. Zamzami N, Kroemer G. The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2001; 2 : 67–71. [Google Scholar]
  11. Martinou JC, Desagher S, Antonsson B. Cytochrome c release from mitochondria: all or nothing. Nat Cell Biol 2000; 2 : E41–3. [Google Scholar]
  12. Zou H, Li Y, Liu X, Wang X. An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999; 274 : 11549–56. [Google Scholar]
  13. Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosisinducing factor. Nature 1999; 397 : 441–6. [Google Scholar]
  14. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 104 : 487–501. [Google Scholar]
  15. Siegel RM, Chan FK, Chun HJ, Lenardo MJ. The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat Immunol 2000; 1 : 469–74. [Google Scholar]
  16. Kischkel FC, Hellbardt S, Behrmann I, et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995; 14 : 5579–88. [Google Scholar]
  17. Orlinick JR, Vaishnaw A, Elkon KB, Chao MV. Requirement of cysteinerich repeats of the Fas receptor for binding by the Fas ligand. J Biol Chem 1997; 272 : 28889–94. [Google Scholar]
  18. Siegel RM, Frederiksen JK, Zacharias DA, et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 2000; 288 : 2354–7. [Google Scholar]
  19. Papoff G, Hausler P, Eramo A, et al. Identification and characterization of a ligand-independent oligomerization domain in the extracellular region of the CD95 death receptor. J Biol Chem 1999; 274 : 38241–50. [Google Scholar]
  20. Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998; 17 : 1675–87. [Google Scholar]
  21. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998; 94 : 481–90. [Google Scholar]
  22. Eskes R, Desagher S, Antonsson B, Martinou JC. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 2000; 20 : 929–35. [Google Scholar]
  23. Zhang H, Xu Q, Krajewski S, et al. BAR: an apoptosis regulator at the intersection of caspases and Bcl-2 family proteins. Proc Natl Acad Sci USA 2000; 97 : 2597–602. [Google Scholar]
  24. Feldman M, Taylor P, Paleolog E, Brennan FM, Maini RN. Anti-TNF alpha therapy is useful in rheumatoid arthritis and Crohn’s disease: analysis of the mechanism of action predicts utility in other diseases. Transplant Proc 1998; 30 : 4126–7. [Google Scholar]
  25. Jenkins M, Keir M, McCune JM. A membrane-bound Fas decoy receptor expressed by human thymocytes. J Biol Chem 2000; 275 : 7988–93. [Google Scholar]
  26. Pitti RM, Marsters SA, Lawrence DA, et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 1998; 396 : 699–703. [Google Scholar]
  27. Hueber AO, Bernard AM, Hérincs Z, Couzinet A, He HT. An essential role of membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Rep 2002; 3 : 190–6. [Google Scholar]
  28. Irmler M, Thome M, Hahne M, et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997; 388 : 190–5. [Google Scholar]
  29. Krueger A, Schmitz I, Baumann S, Krammer PH, Kirchhoff S. Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem 2001; 276 : 20633–40. [Google Scholar]
  30. Jiang Y, Woronicz JD, Liu W, Goeddel DV. Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science 1999; 283 : 543–6. [Google Scholar]
  31. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998; 281 : 1322–6. [Google Scholar]
  32. Crompton M. Bax, Bid and the permeabilization of the mitochondrial outer membrane in apoptosis. Curr Opin Cell Biol 2000; 12 : 414–9. [Google Scholar]
  33. Schendel SL, Montal M, Reed JC. Bcl-2 family proteins as ion-channels. Cell Death Differ 1998; 5 : 372–80. [Google Scholar]
  34. Fesik SW, Shi Y. Structural biology. Controlling the caspases. Science 2001; 294 : 1477–8. [Google Scholar]
  35. Holcik M, Gibson H, Korneluk RG. XIAP: apoptotic brake and promising therapeutic target. Apoptosis 2001; 6 : 253–61. [Google Scholar]
  36. Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol 2001; 3 : E255–63. [Google Scholar]
  37. Jacobson MD, Burne JF, Raff MC. Programmed cell death and Bcl-2 protection in the absence of a nucleus. EMBO J 1994; 13 : 1899–910. [Google Scholar]
  38. Wang ZG, Delva L, Gaboli M, et al. Role of PML in cell growth and the retinoic acid pathway. Science 1998; 279 : 1547–51. [Google Scholar]
  39. Yang X, Khosravi-Far R, Chang H, Baltimore D. Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 1997; 89 : 1067–76. [Google Scholar]
  40. Chang HY, Nishitoh H, Yang X, Ichijo H, Baltimore D. Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science 1998; 281 : 1860–3. [Google Scholar]
  41. Li H, Leo C, Zhu J, et al. Sequestration and inhibition of Daxxmediated transcriptional repression by PML. Mol Cell Biol 2000; 20 : 1784–96. [Google Scholar]
  42. Torii S, Egan DA, Evans RA, Reed JC. Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs). EMBO J 1999; 18 : 6037–49. [Google Scholar]
  43. Zhong S, Salomoni P, Ronchetti S, Guo A, Ruggero D, Pandolfi PP.. Promyelocytic leukemia protein (PML) and Daxx participate in a novel nuclear pathway for apoptosis. J Exp Med 2000; 191 : 631–40. [Google Scholar]
  44. Charette SJ, Lavoie JN, Lambert H, Landry J. Inhibition of Daxxmediated apoptosis by heat shock protein 27. Mol Cell Biol 2000; 20 : 7602–12. [Google Scholar]
  45. Rochat-Steiner V, Becker K, Micheau O, Schneider P, Burns K, Tschopp J. FIST/HIPK3: a Fas/FADDinteracting serine/threonine kinase that induces FADD phosphorylation and inhibits Fas-mediated Jun NH(2)-terminal kinase activation. J Exp Med 2000; 192 : 1165–74. [Google Scholar]
  46. Liston P, Fong WG, Kelly NL, et al. Identification of XAF1 as an antagonist of XIAP anti-caspase activity. Nat Cell Biol 2001; 3 : 128–33. [Google Scholar]
  47. Stegh AH, Schickling O, Ehret A, et al. DEDD, a novel death effector domaincontaining protein, targeted to the nucleolus. EMBO J 1998; 17 : 5974–86. [Google Scholar]
  48. Schickling O, Stegh AH, Byrd J, Peter ME. Nuclear localization of DEDD leads to caspase-6 activation through its death effector domain and inhibition of RNA polymerase I dependent transcription. Cell Death Differ 2001; 8 : 1157–68. [Google Scholar]
  49. Zheng L, Schickling O, Peter ME, Lenardo MJ. The death effector domain-associated factor plays distinct regulatory roles in the nucleus and cytoplasm. J Biol Chem 2001; 276 : 31945–52. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.