Free Access
Med Sci (Paris)
Volume 18, Number 8-9, Août–Septembre 2002
Page(s) 831 - 840
Section M/S Revues : Articles De Synthèse
Published online 15 August 2002
  1. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26 : 239–57. [Google Scholar]
  2. Searle J, Kerr JFR, Bishop CJ. Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance. Pathol Annu 1982; 17 : 229–59. [Google Scholar]
  3. Fiers W, Beyaert R, Declercq W, Vandenabeele P . More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 1999; 18 : 7719–30. [Google Scholar]
  4. Clarke PGH. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol 1990; 181 : 195–213. [Google Scholar]
  5. Schwartz LM, Smith SW, Jones MEE, Osborne BA. Do all programmed cell deaths occur via apoptosis? Proc Natl Acad Sci USA 1993; 90 : 980–4. [Google Scholar]
  6. Zakeri Z, Bursch W, Tenniswood M, Lockshin RA. Cell death: programmed, apoptosis, necrosis, or other ? Cell Death Differ 1995; 2 : 87–96. [Google Scholar]
  7. Chautan C, Chazal G, Cecconi F, Gruss P, Golstein P . Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr Biol 1999; 9 : 967–70. [Google Scholar]
  8. Sulston JE. Post-embryonic development in the ventral cord of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 1976; 275 : 287–97. [Google Scholar]
  9. Hedgecock EM, Sulston JE, Thomson JN. Mutations affecting programmed cell death in the nematode Caenorhabitis elegans. Science 1983; 220 : 1277–9. [Google Scholar]
  10. Horvitz HR, Sternberg PW, Greenwald IS, Fixsen W, Ellis HM. Mutations that affect neural cell lineages and cell fates during the development of the nematode Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 1983; 48 : 453–63. [Google Scholar]
  11. Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell 1986; 44 : 817–29. [Google Scholar]
  12. Yuan J, Horvitz HR. The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev Biol 1990; 138 : 33–41. [Google Scholar]
  13. Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J. Induction of apoptosis in fibroblasts by IL-1 β-converting enzyme, a mammalian homolog of the C.elegans cell death gene ced-3. Cell 1993; 75 : 653–60. [Google Scholar]
  14. Alnemri ES, Livingston DJ, Nicholson DW, et al. Human ICE/CED-3 protease nomenclature. Cell 1996; 87 : 171. [Google Scholar]
  15. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90 : 405–13. [Google Scholar]
  16. Hengartner MO, Ellis RE, Horvitz HR. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 1992; 356 : 494–9. [Google Scholar]
  17. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988; 335 : 440–2. [Google Scholar]
  18. Metzstein MM, Stanfield GM, Horvitz HR. Genetics of programmed cell death in C.elegans: past, present and future. Trends Genet 1998; 14 : 410–6. [Google Scholar]
  19. Gumienny TL, Hengartner MO. How the worm removes corpses: the nematode C. elegans as a model system to study engulfment. Cell Death Differ 2001; 8 : 564–8. [Google Scholar]
  20. Aravind L, Dixit VM, Koonin EV. Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science 2001; 291 : 1279–84. [Google Scholar]
  21. Chung S, Gumienny TL, Hengartner MO, Driscoll M. A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans. Nat Cell Biol 2000; 2 : 931–7. [Google Scholar]
  22. Xu K, Tavernarakis N, Driscoll M. Necrotic cell death in C. elegans requires the function of nalreticulin and regulators of Ca2+ release from the endoplasmic reticulum. Neuron 2001; 31 : 957–71. [Google Scholar]
  23. White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H. Genetic control of programmed cell death in Drosophila. Science 1994; 264 : 677–83. [Google Scholar]
  24. Abrams JM, White K, Fessler LI, Steller H. Programmed cell death during Drosophila embryogenesis. Development 1993; 117 : 29–43. [Google Scholar]
  25. Grether ME, Abrams JM, Agapite J, White K, Steller H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev 1995; 9 : 1694–708. [Google Scholar]
  26. Chen P, Nordstrom W, Gish B, Abrams JM. grim, a novel cell death gene in Drosophila. Genes Dev 1996; 10 : 1773–82. [Google Scholar]
  27. Goyal L, McCall K, Agapite J, Hartwieg E, Steller H. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J 2000; 19 : 589–97. [Google Scholar]
  28. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102 : 33–42. [Google Scholar]
  29. Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000; 102 : 43–53. [Google Scholar]
  30. Martins LM, Iaccarino I, Tenev T, et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 2001; 15 : 15. [Google Scholar]
  31. Bangs P, Franc N, White K. Molecular mechanisms of cell death and phagocytosis in Drosophila. Cell Death Differ 2000; 7 : 1027–34. [Google Scholar]
  32. Hu S, Yang X. dFADD, a novel death domain-containing adapter protein for the drosophila caspase DREDD. J Biol Chem 2000; 275 : 30761–4. [Google Scholar]
  33. Inohara N, Koseki T, Hu Y, Chen S, Nunez G. CLARP, a death effector domain-containing protein interacts with caspase-8 and regulates apoptosis. Proc Natl Acad Sci USA 1997; 94 : 10717–22. [Google Scholar]
  34. Deiss L P, Feinstein E, Berissi H, Cohen O, Kimchi A. Identification of a novel serine/threonine kinase and a novel 15-kDa protein as potential mediators of the gamma interferon-induced cell death. Genes Dev 1995; 9 : 15–30. [Google Scholar]
  35. Cohen O, Feinstein E, Kimchi A. DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J 1997; 16 : 998–1008. [Google Scholar]
  36. Inbal B, Cohen O, Polak-Charcon S, et al. DAP kinase links the control of apoptosis to metastasis. Nature 1997; 390 : 180–4. [Google Scholar]
  37. Raveh T, Droguett G, Horwitz MS, DePinho RA, Kimchi A. DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat Cell Biol 2001; 3 : 1–7. [Google Scholar]
  38. Cohen O, Inbal B, Kissil JL, et al. DAP-kinase participates in TNF-alpha- and Fas-induced apoptosis and its function requires the death domain. J Cell Biol 1999; 146 : 141–8. [Google Scholar]
  39. Jang CW, Chen CH, Chen CC, Chen JY, Su YH, Chen RH. TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase. Nat Cell Biol 2002; 4 : 51–8. [Google Scholar]
  40. Thomas J, Leverrier Y, Marvel J. Bcl-X is the major pleiotropic anti-apoptotic gene activated by retroviral insertion mutagenesis in an IL-3 dependent bone marrow derived cell line. Oncogene 1998; 16 : 1399–408. [Google Scholar]
  41. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 1992; 356 : 314–7. [Google Scholar]
  42. Murphy ED, Roths JB. A single gene model for massive lymphoproliferation with immune complex disease in new mouse strain MRL. Excerpta Medica International Congress. Amsterdam : Elsevier, 1977; 415 : 69–72. [Google Scholar]
  43. Trauth BC, Klas C, Peters AMJ, et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 1989; 245 : 301–5. [Google Scholar]
  44. Yonehara S, Ishii A, Yonehara M. A cell-killing monoclonal antibody (Anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 1989; 169 : 1747–56. [Google Scholar]
  45. Vercammen D, Beyaert R, Denecker G, et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 1998; 187 : 1477–85. [Google Scholar]
  46. Uren AG, O’Rourke K, Aravind L, et al. Identification of paracaspases and metacaspases. Two ancient families of caspase-like proteins, One of which plays a key role in MALT lymphoma. Mol Cell 2000; 6 : 961–7. [Google Scholar]
  47. Hadfield KA, Bennett AB. Programmed senescence of plant organs. Cell Death Differ 1997; 4 : 662–70. [Google Scholar]
  48. Fukuda H. Programmed cell death during vascular system formation. Cell Death Differ 1997; 4 : 684–8. [Google Scholar]
  49. Beers EP. Programmed cell death during plant growth and development. Cell Death Differ 1997; 4 : 649–61. [Google Scholar]
  50. Mittler R. Cell death in plants. In: Lockshin RA, Zakeri Z, Tilly JL, eds. When cells die. New York : Wiley-Liss Inc, 1998 : 147–73. [Google Scholar]
  51. Lam E, Pontier D, Del Pozo O. Die and let live: programmed cell death in plants. Curr Opin Plant Biol 1999; 2 : 502–7. [Google Scholar]
  52. Hammond-Kosack KE, Jones JD. Resistance gene-dependent plant defense responses. Plant Cell 1996; 8 : 1773–91. [Google Scholar]
  53. Bonas U, Van den Ackerveken G. Gene-for-gene interactions: bacterial avirulence proteins specify plant disease resistance. Curr Opin Microbiol 1999; 2 : 94–8. [Google Scholar]
  54. Holt BF, Mackey D, Dangl JL. Recognition of pathogens by plants. Curr Biol 2000; 10 : R5–7. [Google Scholar]
  55. Tam LW, Kirk DL. The program for cellular differentiation in Volvox carteri as revealed by molecular analysis of development in a gonidialess / somatic regenerator mutant. Development 1991; 112 : 571–80. [Google Scholar]
  56. Jazwinski SM. The genetics of aging in the yeast Saccharomyces cerevisiae. Genetica 1993; 91 : 35–51. [Google Scholar]
  57. Fraser A, James C. Fermenting debate: do yeast undergo apoptosis? Trends Cell Biol 1998; 8 : 219–21. [Google Scholar]
  58. Xu Q, Reed JC. Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol Cell 1998; 1 : 337–46. [Google Scholar]
  59. Hawkins CJ, Wang SL, Hay BA. A cloning method to identify caspases and their regulators in yeast: identification of Drosophila IAP1 as an inhibitor of the Drosophila caspase DCP-1. Proc Natl Acad Sci USA 1999; 96 : 2885–90. [Google Scholar]
  60. Madeo F, Frohlich E, Frohlich KU. A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 1997; 139 : 729–34. [Google Scholar]
  61. Madeo F, Frohlich E, Ligr M, et al. Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 1999; 145 : 757–67. [Google Scholar]
  62. Daugas E, Candé C, Kroemer G. Erythrocytes : death of a mummy. Cell Death Differ 2001; 8 : 1131–3. [Google Scholar]
  63. Rizet G. Les phénomènes de barrage chez Podospora anserina. I. Analyse génétique des barrages entre les souches S et s. Rev Cytol Biol Veget 1952; 13 : 51–92. [Google Scholar]
  64. Saupe SJ. Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol Mol Biol Rev 2000; 64 : 489–502. [Google Scholar]
  65. Coustou V, Deleu C, Saupe S, Begueret J. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci USA 1997; 94 : 9773–8. [Google Scholar]
  66. Coustou V, Deleu C, Saupe SJ, Begueret J. Mutational analysis of the [Het-s] prion analog of Podospora anserina. A short N-terminal peptide allows prion propagation. Genetics 1999; 153 : 1629–40. [Google Scholar]
  67. Loubradou G, Begueret J, Turcq B. A mutation in an HSP90 gene affects the sexual cycle and suppresses vegetative incompatibility in the fungus Podospora anserina. Genetics 1997; 147 : 581–8. [Google Scholar]
  68. Bourges N, Groppi A, Barreau C, Clave C, Begueret J. Regulation of gene expression during the vegetative incompatibility reaction in Podospora anserina. Characterization of three induced genes. Genetics 1998; 150 : 633–41. [Google Scholar]
  69. Jamet-Vierny C, Contamine V, Boulay J, Zickler D, Picard M. Mutations in genes encoding the mitochondrial outer membrane proteins Tom70 and Mdm10 of Podospora anserina modify the spectrum of mitochondrial DNA rearrangements associated with cellular death. Mol Cell Biol 1997; 17 : 6359–66. [Google Scholar]
  70. Begel O, Boulay J, Albert B, Dufour E, Sainsard-Chanet A. Mitochondrial group II introns, cytochrome c oxidase, and senescence in Podospora anserina. Mol Cell Biol 1999; 19 : 4093–100. [Google Scholar]
  71. Dufour E, Boulay J, Rincheval V, Sainsard-Chanet A. A causal link between respiration and senescence in Podospora anserina. Proc Natl Acad Sci USA 2000; 97 : 4138–43. [Google Scholar]
  72. Loomis WF. Genetic tools for Dictyostelium discoideum. Meth Cell Biol 1987; 28 : 31–65. [Google Scholar]
  73. Kuspa A, Loomis WF. Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA. Proc Natl Acad Sci USA 1992; 89 : 8803–7. [Google Scholar]
  74. Kay RR. Cell differentiation in monolayers and the investigation of slime mold morphogens. Meth Cell Biol 1987; 28 : 433–48. [Google Scholar]
  75. Cornillon S, Foa C, Davoust J, Buonavista N, Gross JD, Golstein P. Programmed cell death in Dictyostelium. J Cell Sci 1994; 107 : 2691–704. [Google Scholar]
  76. Arnoult D, Tatischeff I, Estaquier J, et al. On the evolutionary conservation of the cell death pathway: mitochondrial release of an apoptosis-inducing Factor during Dictyostelium discoideum cell death. Mol Biol Cell 2001; 12 : 3016–30. [Google Scholar]
  77. Tatischeff I, Petit PX, Grodet A, Tissier JP, Duband-Goulet I, Ameisen JC. Inhibition of multicellular development switches cell death of Dictyostelium discoideum towards mammalian-like unicellular apoptosis. Eur J Cell Biol 2001; 80 : 428–41. [Google Scholar]
  78. Olie RA, Durrieu F, Cornillon S, et al. Apparent caspase independence of programmed cell death in Dictyostelium. Curr Biol 1998; 8 : 955–8. [Google Scholar]
  79. Cornillon S, Olie RA, Golstein P. An insertional mutagenesis approach to Dictyostelium cell death. Cell Death Differ 1998; 5 : 416–25. [Google Scholar]
  80. Levraud JP, Adam M, Cornillon S, Golstein P. Methods to study cell death in Dictyostelium discoideum. In : Schwartz LM, Ashwell J, eds. Cell death. Methods in cell biology, 2e ed. San Diego: Academic Press, 2001 : 469–97. [Google Scholar]
  81. Aballay A, Ausubel FM. Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing. Proc Natl Acad Sci USA 2001; 98 : 2735–9. [Google Scholar]
  82. Freeman RS, Estus S, Johnson EM Jr. Analysis of cell cycle-related gene expression in postmitotic neurons: selective induction of cyclin D1 during programmed cell death. Neuron 1994; 12 : 343–55. [Google Scholar]
  83. Chen G, Shi L, Litchfield DW, Greenberg AH. Rescue from granzyme B-induced apoptosis by Wee1 kinase. J Exp Med 1995; 181 : 2295–300. [Google Scholar]
  84. Kranenburg O, Van der Eb A, Zantema A. Cyclin D1 is an essential mediator of apoptotic neuronal cell death. EMBO J 1996; 15 : 46–54. [Google Scholar]
  85. Wang J, Walsh K. Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science 1996; 273 : 359–61. [Google Scholar]
  86. Harvey KJ, Lukovic D, Ucker DS. Caspase-dependent Cdk activity is a requisite effector of apoptotic death events. J Cell Biol 2000; 148 : 59–72. [Google Scholar]
  87. Kitanaka C, Kuchino Y. Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ 1999; 6 : 508–15. [Google Scholar]
  88. Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2001; 2 : 589–98. [Google Scholar]
  89. Wyllie AH, Golstein P. More than one way to go. Proc Natl Acad Sci USA 2001; 98 : 11-3. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.