Free Access
Med Sci (Paris)
Volume 18, Number 6-7, Juin–Juillet 2002
Page(s) 697 - 708
Section M/S Revues : Articles de Synthèse
Published online 15 June 2002
  1. Hauw JJ, Duyckaerts C. Alzheimer disease. In : Duckett S, De La Torre JC, eds. Pathology of the aging nervous system, 2nd ed. New York : Oxford University Press, 2001: 207–63. [Google Scholar]
  2. Duyckaerts C, Kawasaki H, Delaère P, Rainsard C, Hauw JJ. Fiber disorganization in the neocortex of patients with senile dementia of the Alzheimer type. Neuropathol Appl Neurobiol 1989; 15 : 233–47. [Google Scholar]
  3. Pollanen MS, Markiewicz P, Goh MC. Paired helical filaments are twisted ribbons composed of two parallel and aligned components : image reconstruction and modeling of filament structure using atomic force microscopy. J Neuropathol Exp Neurol 1997; 56 : 79–85. [Google Scholar]
  4. Brion JP, Passareiro H, Nunez J, Flament-Durand J. Mise en évidence immunologique de la protéine tau au niveau des lésions de dégénérescence neurofibrillaire de la maladie d’Alzheimer. Arch Biol (Brux) 1985; 95 : 229–35. [Google Scholar]
  5. Delacourte A, Flament S, Dibe EM, et al. Pathological proteins Tau 64 and 69 are specifically expressed in the somatodendritic domain of the degenerating cortical neurons during Alzheimer’s disease. Demonstration with a panel of antibodies against Tau proteins. Acta Neuropathol 1990; 80 : 111–7. [Google Scholar]
  6. Joachim CL, Duffy LK, Morris JH, Selkoe DJ. Protein chemical and immunocytochemical studies of meningovascular ß-amyloid protein in Alzheimer’s disease and normal aging. Brain Res 1988; 474 : 100–11. [Google Scholar]
  7. Delaère P, Duyckaerts C, He Y, Piette F, Hauw JJ. Subtypes and differential laminar distributions of ßA4 deposits in Alzheimer’s disease : relationship with the intellectual status of 26 cases. Acta Neuropathol (Berl) 1991; 81 : 328–35. [Google Scholar]
  8. Barelli H, Lebeau A, Vizzavona J, et al. Characterization of new polyclonal antibodies specific for 40 and 42 amino acid-long amyloid beta peptides: their use to examine the cell biology of presenilins and the immunohistochemistry of sporadic Alzheimer’s disease and cerebral amyloid angiopathy cases. Mol Med 1997; 3 : 695–707. [Google Scholar]
  9. Probst A, Basler V, Bron B, Ulrich J. Neuritic plaques in senile dementia of the Alzheimer type : a Golgi analysis in the hippocampal region. Brain Res 1983; 268 : 249–54. [Google Scholar]
  10. He Y, Delaère P, Duyckaerts C, Wasowicz M, Piette F, Hauw JJ. Two distinct ubiquitin immunoreactive senile plaques in Alzheimer’s disease: relationship with the intellectual status in 29 cases. Acta Neuropathol (Berl) 1993; 86 : 109–16. [Google Scholar]
  11. Eikelenboom P, Rozemuller JM, VanMuiswinkel FL. Inflammation and Alzheimer’s disease: Relationships between pathogenic mechanisms and clinical expression. Exp Neurol 1998; 154 : 89–98. [Google Scholar]
  12. Grignon Y, Duyckaerts C, Bennecib M, Hauw JJ. Cytoarchitectonic alterations in the supramarginal gyrus of late onset Alzheimer’s disease. Acta Neuropathol (Berl) 1998; 95 : 395–406. [Google Scholar]
  13. Gomez-Isla T, Price JL, McKeel DW, Morris JC, Growdon JH, Hyman BT. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 1996; 16 : 4491–500. [Google Scholar]
  14. Cras P, Smith MA, Richey PL, Siedlak SL, Mulvihill P, Perry G. Extracellular neurofibrillary tangles reflect neuronal loss and provide further evidence of extensive protein cross-linking in Alzheimer disease. Acta Neuropathol (Berl) 1995; 89 : 291–5. [Google Scholar]
  15. Stadelmann C, Deckwerth TL, Srinivasan A, et al. Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease. Evidence for apoptotic cell death. Am J Pathol 1999; 155 : 1459–66. [Google Scholar]
  16. Scheff SW, Price DA. Synapse loss in the temporal lobe in Alzheimer’s disease. Ann Neurol 1993; 33 : 190–9. [Google Scholar]
  17. Shimohama S, Kamiya S, Taniguchi T, Akagawa K, Kimura J. Differential involvement of synaptic vesicle and presynaptic plasma membrane proteins in Alzheimer’s disease. Biochem Biophys Res Commun 1997; 236 : 239–42. [Google Scholar]
  18. Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer’s disease : synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30 : 572–80. [Google Scholar]
  19. Dickson DW, Crystal HA, Bevona C, Honer W, Vincent I, Davies P. Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol Aging 1995; 16 : 285–304. [Google Scholar]
  20. Delaère P, Duyckaerts C, Masters C, Piette F, Hauw JJ. Large amounts of neocortical ßA4 deposits without Alzheimer changes in a nondemented case. Neurosci Lett 1990; 116 : 87–93. [Google Scholar]
  21. Morris JC, Storandt M, McKeel DW Jr, et al. Cerebral amyloid deposition and diffuse plaques in « normal » aging: evidence for presymptomatic and very mild Alzheimer’s disease. Neurology 1996; 46 : 707–19. [Google Scholar]
  22. Hardy J. An ’anatomical cascade hypothesis’ for Alzheimer’s disease. Trends Neurosci 1992; 15 : 200–1. [Google Scholar]
  23. Duyckaerts C, Hauw JJ. Prevalence, incidence and duration of Braak’s stages in the general population: can we know ? Neurobiol Aging 1997; 18 : 362–9. [Google Scholar]
  24. Braak H, Braak E. Evolution of neuronal changes in the course of Alzheimer’s disease. In : Jellinger K, Fazekas F, Windisch M, eds. Ageing and dementia. Wien : Springer Verlag, 1998 : 127–40. [Google Scholar]
  25. Delacourte A, David JP, Sergeant N, et al. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 1999; 52 : 1158–65. [Google Scholar]
  26. Christie RH, Bacskai BJ, Zipfel WR, et al. Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy. J Neurosci 2001; 21 : 858–64. [Google Scholar]
  27. Benveniste H, Einstein G, Kim KR, Hulette C, Johnson GA. Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc Natl Acad Sci USA 1999; 96 : 14079–84. [Google Scholar]
  28. Dhenain M, Privat N, Duyckaerts C, Jacobs RE. Senile plaques do not induce susceptibility effects in T2*-weighted MR microscopic images. NMR Biomed 2002; 15 : 197–203. [Google Scholar]
  29. Zaim Wadghiri Y, Sigurdsson E, Tang C, et al. MR micro-imaging of contrast tagged amyloid plaques in transgenic mouse models of Alzheimer’s disease. In : 10th Scientific Meeting of the International Society for Magnetic Resonance in Medicine. Honolulu, USA: International Society for Magnetic Resonance in Medicine, 2002. [Google Scholar]
  30. Lee HJ, Zhang Y, Zhu C, Duff K, Pardridge WM. Imaging brain amyloid of Alzheimer disease in vivo in transgenic mice with an Aβ peptide radiopharmaceutical. J Cerebr Blood Flow Metab 2002; 22 : 223–31. [Google Scholar]
  31. Esiri MM, Hyman BT, Beyreuther K, Masters CI. Ageing and dementia. In : Graham DI, Lantos P, eds. Greenfield’s neuropathology. New York: Arnold, 1997 : 153–234. [Google Scholar]
  32. Najlerahim A, Bowen DM. Regional weight loss in the cerebral cortex and some subcortical nuclei in senile dementia of the Alzheimer type. Acta Neuropathol (Berl) 1989; 75 : 509–12. [Google Scholar]
  33. Duyckaerts C, Hauw JJ, Piette F, et al. Cortical atrophy in senile dementia of the Alzheimer type is mainly due to a decrease in cortical length. Acta Neuropathol (Berl) 1985; 66 : 72–4. [Google Scholar]
  34. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease : report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 1984; 19 : 939–44. [Google Scholar]
  35. Hubbard BM, Anderson JM. A quantitative study of cerebral atrophy in old age and senile dementia. J Neurol Sci 1981; 50 : 135–45. [Google Scholar]
  36. Erkinjuntti T, Lee DH, Gao F, et al. Temporal lobe atrophy on magnetic resonance imaging in the diagnosis of early Alzeimer’s disease. Arch Neurol 1993; 50 : 305–10. [Google Scholar]
  37. Killiany RJ, Gomez-Isla T, Moss M, et al. Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease. Ann Neurol 2000; 47 : 430–9. [Google Scholar]
  38. Deweer B, Lehericy S, Pillon B, et al. Memory disorders in probable Alzheimer’s disease: the role of hippocampal atrophy as shown with MRI. J Neurol Neurosurg Psychiatry 1995; 58 : 590–7. [Google Scholar]
  39. Barber R, Gholkar A, Scheltens P, Ballard C, McKeith IG, O’Brien JT. Medial temporal lobe atrophy on MRI in dementia with Lewy bodies: a comparison with Alzheimer’s disease, vascular dementia and normal ageing. Neurology 1999; 52 : 1153–8. [Google Scholar]
  40. Lehericy S, Baulac M, Chiras J, et al. Amygdalohippocampal MR volume measurements in the early stages of Alzheimer disease. Am J Neuroradiol 1994; 15 : 929–37. [Google Scholar]
  41. Fox NC, Crum WR, Scahill RI, Stevens JM, Janssen JC, Rossor MN. Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 2001; 358 : 201–5. [Google Scholar]
  42. Yamauchi H, Fukuyama H, Nagahama Y, et al. Comparison of the pattern of atrophy of the corpus callosum in frontotemporal dementia, progressive supranuclear palsy, and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2000; 69 : 623–9. [Google Scholar]
  43. Hanyu H, Asano T, Sakurai H, et al. Diffusionweighted and magnetization transfer imaging of the corpus callosum in Alzheimer’s disease. J Neurol Sci 1999; 167 : 37–44. [Google Scholar]
  44. Kantarci K, Jack CR, Jr., Xu YC, et al. Mild cognitive impairment and Alzheimer disease: regional diffusivity of water. Radiology 2001; 219 : 101–7. [Google Scholar]
  45. Shonk T, Moats RA, Gifford P, et al. Probable Alzheimer’s disease. Diagnosis with proton MR spectroscopy. Radiology 1995; 185 : 65–72. [Google Scholar]
  46. Pettegrew JW, Klunk WE, Panchalingam K, McClure RJ, Stanley JA. Magnetic resonance spectroscopic changes in Alzheimer’s disease. Ann NY Acad Sci 1997; 826 : 282–306. [Google Scholar]
  47. Petit-Taboue MC, Landeau B, Desson JF, Desgranges B, Baron JC. Effects of healthy aging on the regional cerebral metabolic rate of glucose assessed with statistical parametric mapping. Neuroimage 1998; 7 : 176–84. [Google Scholar]
  48. Ashford JW, Shih WJ, Coupal J, et al. Single SPECT measures of cerebral cortical perfusion reflect time-index estimation of dementia severity in Alzheimer’s disease. J Nucl Med 2000; 41 : 57–64. [Google Scholar]
  49. Pasquier F, Lavenu I, Lebert F, Jacob B, Steinling M, Petit H. The use of SPECT in a multidisciplinary memory clinic. Dementia Geriatr Cogn Disord 1997; 8 : 85–91. [Google Scholar]
  50. Jelic V, Nordberg A. Early diagnosis of Alzheimer disease with positron emission tomography. Alzh Dis Ass Disord 2000; 14 (suppl 1) : S109–13. [Google Scholar]
  51. Grady CL. Brain imaging and age-related changes in cognition. Exp Gerontol 1998; 33 : 661–73. [Google Scholar]
  52. Rapoport SI. Functional brain imaging in the resting state and during activation in Alzheimer’s disease. Implications for disease mechanisms involving oxidative phosphorylation. Ann NY Acad Sci 1999; 893 : 138–53. [Google Scholar]
  53. Smith CD, Andersen AH, Kryscio RJ, et al. Altered brain activation in cognitively intact individuals at high risk for Alzheimer’s disease. Neurology 1999; 53 : 1391–6. [Google Scholar]
  54. Lehéricy S, Hirsch EC, Cervera-Piérot P, et al. Heterogeneity and selectivity of the degeneration of cholinergic neurons in the basal forebrain of patients with Alzheimer’s disease. J Comp Neurol 1993; 330 : 15–31. [Google Scholar]
  55. Horvath TB, Davis KL. Central nervous system disorders in aging. In : Schneider EL, Rowe JW, eds. Handbook of the biology of aging, 3rd ed. London : Academic Press, 1990 : 306–29. [Google Scholar]
  56. Bierer L, Haroutunian V, Gabriel S, et al. Neurochemical correlates of dementia severity in Alzheimer’s disease: Relative importance of the cholinergic deficits. J Neurochem 1995; 64 : 749–60. [Google Scholar]
  57. Volkow ND, Ding YS, Fowler JS, Gatley SJ. Imaging brain cholinergic activity with positron emission tomography: its role in the evaluation of cholinergic treatments in Alzheimer’s dementia. Biol Psychiatry 2001; 49 : 211–20. [Google Scholar]
  58. Meltzer CC, Smith G, DeKosky ST, et al. Serotonin in aging, late-life depression, and Alzheimer’s disease: The emerging role of functional imaging. Neuropsychopharmacology 1998; 18 : 407–30. [Google Scholar]
  59. Duyckaerts C, Bennecib M, Grignon Y, et al. Modeling the relation between neurofibrillary tangles and intellectual status. Neurobiol Aging 1997; 18 : 267–73. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.