Free Access
Issue
Med Sci (Paris)
Volume 18, Number 2, Février 2002
Page(s) 181 - 192
Section M/S Revues : Articles de Synthèse
DOI https://doi.org/10.1051/medsci/2002182181
Published online 15 February 2002
  1. Simpson L. The mitochondrial genome of kinetoplastid protozoa: genomic organization, transcription, replication, and evolution. Annu Rev Microbiol 1987; 41 : 363–82. [Google Scholar]
  2. Benne R, Van den Burg J, Brakenhoff JP, Sloof P, Van Boom JH,Tromp MC. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 1986; 46 : 819–26. [Google Scholar]
  3. Arts GJ,Benne R. Mechanism and evolution of RNA editing in kinetoplastida. Biochim Biophys Acta 1996; 1307 : 39–54. [Google Scholar]
  4. Stuart K, Allen TE, Heidmann S, Seiwert SD. RNA editing in kinetoplastid protozoa. Microbiol Mol Biol Rev 1997; 61 : 105–20. [Google Scholar]
  5. Estevez AM, Simpson L. Uridine insertion/deletion RNA editing in trypanosome mitochondria: a review. Gene 1999; 240 : 247–60. [Google Scholar]
  6. Blum B, Bakalara N, Simpson L. A model for RNA editing in kinetoplastid mitochondria: guide RNA molecules transcribed from maxicircle DNA provide the edited information. Cell 1990; 60 : 189–98. [Google Scholar]
  7. Bakalara N, Simpson AM, Simpson L. The Leishmania kinetoplast-mitochondrion contains terminal uridylyltransferase and RNA ligase activities. J Biol Chem 1989; 264 : 18679–86. [Google Scholar]
  8. Blanc V, Alfonzo JD, Aphasizhev R, Simpson L. The mitochondrial RNA ligase from Leishmania tarentolae can join RNA molecules bridged by a complementary RNA. J Biol Chem 1999; 274 : 24289–96. [Google Scholar]
  9. Panigrahi AK, Gygi SP, Ernst NL, et al. Association of two novel proteins, TbMP52 and TbMP48, with the Trypanosoma brucei RNA editing complex. Mol Cell Biol 2001; 21 : 380–9. [Google Scholar]
  10. Corell RA, Read LK, Riley GR, et al. Complexes from Trypanosoma brucei that exhibit deletion editing and other editing-associated properties. Mol Cell Biol 1996; 16 : 1410–8. [Google Scholar]
  11. Missel A, Souza AE, Norskau G, Goringer HU. Disruption of a gene encoding a novel mitochondrial DEAD-box protein in Trypanosoma brucei affects edited mRNAs. Mol Cell Biol 1997; 17 : 4895–903. [Google Scholar]
  12. Feagin JE, Stuart K. Developmental aspects of uridine addition within mitochondrial transcripts of Trypanosoma brucei. Mol Cell Biol 1988; 8 : 1259–65. [Google Scholar]
  13. Schnaufer A, Panigrahi AK, Panicucci B, et al. An RNA ligase essential for RNA editing and survival of the bloodstream form of Trypanosoma brucei. Science 2001; 291 : 2159–62. [Google Scholar]
  14. Alfonzo JD, Blanc V, Estevez AM, Rubio MA, Simpson L. C to U editing of the anticodon of imported mitochondrial tRNA(Trp) allows decoding of the UGA stop codon in Leishmania tarentolae. EMBO J 1999; 18 : 7056–62. [Google Scholar]
  15. Powell LM, Wallis SC, Pease RJ, Edwards YH, Knott TJ, Scott J. A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 1987; 50 : 831–40. [Google Scholar]
  16. Backus JW, Smith HC. Three distinct RNA sequence elements are required for efficient apolipoprotein B (apoB) RNA editing in vitro. Nucleic Acids Res 1992; 20 : 6007–14. [Google Scholar]
  17. Navaratnam N, Morrison JR, Bhattacharya S, et al. The p27 catalytic subunit of the apolipoprotein B mRNA editing enzyme is a cytidine deaminase. J Biol Chem 1993; 268 : 20709–12. [Google Scholar]
  18. Teng B, Burant CF, Davidson NO. Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science 1993; 260 : 1816–9. [Google Scholar]
  19. Mehta A, Kinter MT, Sherman NE, Driscoll DM. Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apoli-poprotein B mRNA. Mol Cell Biol 2000; 20 : 1846–54. [Google Scholar]
  20. Blanc V, Navaratnam N, Henderson JO, et al. Identification of GRY-RBP as an apolipoprotein B RNA-binding protein that interacts with both apobec-1 and apobec-1 complementation factor to modulate C to U editing. J Biol Chem 2001; 276 : 10272–83. [Google Scholar]
  21. Liao W, Hong SH, Chan BH, Rudolph FB, Clark SC, Chan L. APOBEC-2, a cardiac- and skeletal muscle-specific member of the cytidine deaminase supergene family. Biochem Biophys Res Commun 1999; 260 : 398–404. [Google Scholar]
  22. Jacobs H,Bross L. Towards an understanding of somatic hypermutation. Curr Opin Immunol 2001; 13 : 208–18. [Google Scholar]
  23. Linton MF, Farese RV, Young SG. Familial hypobetalipoproteinemia. J Lipid Res 1993; 34 : 521–41. [Google Scholar]
  24. Kozarsky KF, Bonen DK, Giannoni F, Funahashi T, Wilson JM, Davidson NO. Hepatic expression of the catalytic subunit of the apolipoprotein B mRNA editing enzyme (apobec-1) ameliorates hypercholesterolemia in LDL receptor-deficient rabbits. Hum Gene Ther 1996; 7 : 943–57. [Google Scholar]
  25. Yamanaka S, Poksay KS, Arnold KS, Innerarity TL. A novel translational repressor mRNA is edited extensively in livers containing tumors caused by the transgene expression of the apoB mRNA-editing enzyme. Genes Dev 1997; 11 : 321–33. [Google Scholar]
  26. Bass BL, Weintraub H. A developmentally regulated activity that unwinds RNA duplexes. Cell 1987; 48 : 607–13. [Google Scholar]
  27. Rebagliati MR, Melton DA. Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell 1987; 48 : 599–605. [Google Scholar]
  28. Seeburg PH. RNA helicase participates in the editing game. Neuron 2000; 25 : 261–3. [Google Scholar]
  29. Maas S, Rich A. Changing genetic information through RNA editing. Bioessays 2000; 22 : 790–802. [Google Scholar]
  30. Sommer B, Köhler M, Sprengel R, Seeburg PH. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 1991; 67 : 11–9. [Google Scholar]
  31. Higuchi M, Maas S, Single FN, et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 2000; 406 : 78–81. [Google Scholar]
  32. Reenan RA. The RNA world meets behavior: A—>I pre-mRNA editing in animals. Trends Genet 2001; 17 : 53–6. [Google Scholar]
  33. Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, et al. Nipah virus: a recently emergent deadly paramyxovirus. Science 2000; 288 : 1432–5. [Google Scholar]
  34. Hausmann S, Garcin D, Delenda C, Kolakofsky D. The versatility of paramyxovirus RNA polymerase stuttering. J Virol 1999; 73 : 5568–76. [Google Scholar]
  35. Vidal S, Curran J, Kolakofsky D. A stuttering model for paramyxovirus P mRNA editing. EMBO J 1990; 9 : 2017–22. [Google Scholar]
  36. Hausmann S, Garcin D, Morel AS, Kolakofsky D. Two nucleotides immediately upstream of the essential A6G3 slippery sequence modulate the pattern of G insertions during Sendai virus mRNA editing. J Virol 1999; 73 : 343–51. [Google Scholar]
  37. Feldmann H, Volchkov VE, Volchkova VA, Klenk HD. The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis. Arch Virol 1999; 15 : 159–69. [Google Scholar]
  38. Sanchez A, Trappier SG, Mahy BW, Peters CJ, Nichol ST. The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci USA 1996; 93 : 3602–7. [Google Scholar]
  39. Filipovska J, Konarska MM. Specific HDV RNA-templated transcription by pol II in vitro. RNA 2000; 6 : 41–54. [Google Scholar]
  40. Greeve J, Hartwig D, Windler E, Greten H. Requirements for editing in the genomic RNA of hepatitis delta virus. Biochimie 1994; 76 : 1209–16. [Google Scholar]
  41. Polson AG, Ley HLR, Bass BL, Casey JL. Hepatitis delta virus RNA editing is highly specific for the amber/W site and is suppressed by hepatitis delta antigen. Mol Cell Biol 1998; 18 : 1919–26. [Google Scholar]
  42. Bourara K, Litvak S, Araya A. Generation of G-to-A and C-to-U changes in HIV-1 transcripts by RNA editing. Science 2000; 289 : 1564–6. [Google Scholar]
  43. Steinhauser S, Beckert S, Capesius I, Malek O, Knoop V. Plant mitochondrial RNA editing. J Mol Evol 1999; 48 : 303–12. [Google Scholar]
  44. Bock R. Sense from nonsense: how the genetic information of chloroplasts is altered by RNA editing. Biochimie 2000; 82 : 549–57. [Google Scholar]
  45. Blanc V, Litvak S, Araya A. RNA editing in wheat mitochondria proceeds by a deamination mechanism. FEBS Lett 1995; 373 : 56–60. [Google Scholar]
  46. Hirose T, Sugiura M. Involvement of a site-specific trans-acting factor and a common RNA-binding protein in the editing of chloroplast mRNAs: development of a chloroplast in vitro RNA editing system. EMBO J 2001; 20 : 1144–52. [Google Scholar]
  47. Farre JC, Leon G, Jordana X, Araya A. Cis recognition elements in plant mitochondrion RNA editing. Mol Cell Biol 2001; 21 : 6731–7. [Google Scholar]
  48. Zabaleta E, Mouras A, Hernould M, Suharsono, Araya A. Transgenic malesterile plant induced by an unedited atp9 gene is restored to fertility by inhibiting its expression with antisense RNA. Proc Natl Acad Sci USA 1996; 93 : 11259–63. [Google Scholar]
  49. Dietrich A, Small I, Cosset A, Weil JH, Marechal-Drouard L. Editing and import: strategies for providing plant mitochondria with a complete set of functional transfer RNAs. Biochimie 1996; 78 : 518–29. [Google Scholar]
  50. Covello PS, Gray MW. On the evolution of RNA editing. Trends Genet 1993; 9 : 265–8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.