Free Access
Med Sci (Paris)
Volume 17, Number 12, Décembre 2001
Page(s) 1289 - 1296
Section Articles de Synthèse
Published online 15 December 2001
  1. Malloy PJ, Pike JW, Feldman D. The vitamin D receptor and the syndrome of hereditary 1,25- dihydroxyvitamin D-resistant rickets. Endocrinol Rev 1999; 20 : 156–88. [Google Scholar]
  2. Feldman D, Glorieux FH, Pike JW. Vitamin D. San Diego : Academic Press, 1997. [Google Scholar]
  3. Li YC, Pirro AE, Amling M, et al. Targeted ablation of the vitamin D receptor : an animal model of vitamin D-dependent rickets type II with alopecia. Proc Natl Acad Sci USA 1997; 94 : 9831–5. [Google Scholar]
  4. Yoshizawa T, Handa Y, Uematsu Y, et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 1997; 16 : 391–6. [Google Scholar]
  5. Li YC, Amling M, Pirro AE, et al. Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets, and osteomalacia, but not alopecia in vitamin D receptor-ablated mice. Endocrinology 1998; 139: 4391–6. [Google Scholar]
  6. Glorieux FH, Arabian A, Delvin EE. Pseudo-vitamin D deficiency : absence of 25-hydroxyvitamin D 1 alpha- hydroxylase activity in human placenta decidual cells. J Clin Endocrinol Metab 1995; 80 : 2255–8. [Google Scholar]
  7. Shinki T, Shimada H, Wakino S, et al. Cloning and expression of rat 25-hydroxyvitamin D3-1alpha-hydroxylase cDNA. Proc Natl Acad Sci USA 1997; 94 : 12920–5. [Google Scholar]
  8. St-Arnaud R, Messerlian S, Moir JM, Omdahl JL, Glorieux FH. The 25-hydroxyvitamin D 1-alpha-hydroxylase gene maps to the pseudovitamin D-deficiency rickets (PDDR) disease locus. J Bone Miner Res 1997; 12 : 1552–9. [Google Scholar]
  9. Takeyama K, Kitanaka S, Sato T, Kobori M, Yanagisawa J, Kato S. 25-Hydroxyvitamin D3 1alpha-hydroxylase and vitamin D synthesis. Science 1997; 277 : 1827–30. [Google Scholar]
  10. Fu GK, Lin D, Zhang MY, et al. Cloning of human 25-hydroxyvitamin D-1 alphahydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol Endocrinol 1997; 11 : 1961–70. [Google Scholar]
  11. Delvin EE, Glorieux FH, Marie PJ, Pettifor JM. Vitamin D dependency : replacement therapy with calcitriol ? J Pediatr 1981; 99 : 26–34. [Google Scholar]
  12. Reade TM, Scriver CR, Glorieux FH, et al. Response to crystalline 1alpha-hydroxyvitamin D3 in vitamin D dependency. Pediatr Res 1975; 9 : 593–9. [Google Scholar]
  13. Labuda M, Labuda D, Korab-Laskowska M, et al. Linkage disequilibrium analysis in young populations : pseudo-vitamin D- deficiency rickets and the founder effect in French Canadians. Am J Hum Genet 1996; 59 : 633–43. [Google Scholar]
  14. Labuda M, Morgan K, Glorieux FH. Mapping autosomal recessive vitamin D dependency type I to chromosome 12q14 by linkage analysis. Am J Hum Genet 1990; 47 : 28–36. [Google Scholar]
  15. Yoshida T, Monkawa T, Tenenhouse HS, et al. Two novel 1alpha-hydroxylase mutations in French-Canadians with vitamin D dependency rickets type I1. Kidney Int 1998; 54 : 1437–43. [Google Scholar]
  16. Wang JT, Lin CJ, Burridge SM, et al. Genetics of vitamin D 1alpha-hydroxylase deficiency in 17 families. Am J Hum Genet 1998; 63 : 1694–702. [Google Scholar]
  17. Smith SJ, Rucka AK, Berry JL, et al. Novel mutations in the 1alpha-hydroxylase (P450c1) gene in three families with pseudovitamin D-deficiency rickets resulting in loss of functional enzyme activity in bloodderived macrophages. J Bone Miner Res 1999; 14 : 730–9. [Google Scholar]
  18. Kitanaka S, Murayama A, Sakaki T, et al. No enzyme activity of 25-hydroxyvitamin D3 1alpha-hydroxylase gene product in pseudovitamin D deficiency rickets, including that with mild clinical manifestation. J Clin Endocrinol Metab 1999; 84 : 4111–7. [Google Scholar]
  19. Kitanaka S, Takeyama K, Murayama A, et al. Inactivating mutations in the 25-hydroxyvitamin D3 1alpha-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med 1998; 338 : 653–61. [Google Scholar]
  20. Balsan S. Hereditary pseudo-deficiency rickets or vitamin D-dependency type I. In : Glorieux FH, ed. Rickets. New York : Raven Press, 1991 : 155–63. [Google Scholar]
  21. Sakaki T, Sawada N, Takeyama K, Kato S, Inouye K. Enzymatic properties of mouse 25-hydroxyvitamin D3 1 alpha-hydroxylase expressed in Escherichia coli . Eur J Biochem 1999; 259 : 731–8. [Google Scholar]
  22. Sawada N, Sakaki T, Kitanaka S, Takeyama K, Kato S, Inouye K. Enzymatic properties of human 25-hydroxyvitamin D3 1alpha-hydroxylase coexpression with adrenodoxin and NADPH-adrenodoxin reductase in Escherichia coli. Eur J Biochem 1999; 265 : 950–6. [Google Scholar]
  23. Takeuchi A, Okano T, Kobayashi T. The existence of 25-hydroxyvitamin D3-1 alphahydroxylase in the liver of carp and bastard halibut. Life Sci 1991; 48 : 275–82. [Google Scholar]
  24. Hollis BW, Roos BA, Draper HH, Lambert PW. Vitamin D and its metabolites in human and bovine milk. J Nutr 1981; 111 : 1240–8. [Google Scholar]
  25. Brenza HL, Kimmel-Jehan C, Jehan F, et al. Parathyroid hormone activation of the 25-hydroxyvitamin D3-1alpha-hydroxylase gene promoter. Proc Natl Acad Sci USA 1998; 95 : 1387–91. [Google Scholar]
  26. Murayama A, Takeyama K, Kitanaka S, Kodera Y, Hosoya T, Kato S. The promoter of the human 25-hydroxyvitamin D3 1 alpha-hydroxylase gene confers positive and negative responsiveness to PTH, calcitonin, and 1 alpha,25(OH)2D3. Biochem Biophys Res Commun 1998; 249 : 11–6. [Google Scholar]
  27. Murayama A, Takeyama K, Kitanaka S, et al. Positive and negative regulations of the renal 25-hydroxyvitamin D3 1alpha-hydroxylase gene by parathyroid hormone, calcitonin, and 1alpha,25(OH)2D3 in intact animals. Endocrinology 1999; 140 : 2224–31. [Google Scholar]
  28. Shinki T, Ueno Y, DeLuca HF, Suda T. Calcitonin is a major regulator for the expression of renal 25- hydroxyvitamin D3-1alpha-hydroxylase gene in normocalcemic rats. Proc Natl Acad Sci USA 1999; 96 : 8253–8. [Google Scholar]
  29. Murayama A, Takeyama K, Asahina T, Kitanaka S, Kato S. Cloning of a novel transcription factor mediating the negative vitamin D responsiveness through the human 25-hydroxyvitamin D-1alpha-hydroxylase nVDRE. J Bone Miner Res 2000; 15 (suppl 1) : S199. [Google Scholar]
  30. Viville S. Recombinaison homologue : nouveaux vecteurs, nouvelles perspectives. Med Sci 1995; 11 : 735–46. [Google Scholar]
  31. Dardenne O, Prud’homme J, Arabian A, Glorieux FH, St-Arnaud R. Targeted inactivation of the 25-hydroxyvitamin D3-1α-hydroxylase gene (cyp2781) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology 2001; 142 : 3135–41. [Google Scholar]
  32. Girasole G, Wang JM, Pedrazzoni M, et al. Augmentation of monocyte chemotaxis by 1 alpha,25-dihydroxyvitamin D3. Stimulation of defective migration of AIDS patients. J Immunol 1990; 145 : 2459–64. [Google Scholar]
  33. Smith EL, Walworth NC, Holick MF. Effect of 1 alpha,25-dihydroxyvitamin D3 on the morphologic and biochemical differentiation of cultured human epidermal keratinocytes grown in serum-free conditions. J Invest Dermatol 1986; 86 : 709–14. [Google Scholar]
  34. Ducy P, Starbuck M, Priemel M, et al. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 1999; 13 : 1025–36. [Google Scholar]
  35. Kinuta K, Tanaka H, Shinohara M, Kato S, Seino Y. Vitamin D is a negative regulating factor in bone mineralization. J Bone Miner Res 2000;15 (suppl 1) : S180. [Google Scholar]
  36. Gardiner EM, Sims N, Thomas G, et al. Elevated osteoblastic vitamin D receptor in transgenic mice yields stronger bones. Bone 1998; 23 (suppl 5) : S176. [Google Scholar]
  37. Tarutani M, Itami S, Okabe M, et al. Tissue-specific knockout of the mouse Pig-a gene reveals important roles for GPI-anchored proteins in skin development. Proc Natl Acad Sci USA 1997; 94 : 7400–5. [Google Scholar]
  38. Horvai A, Palinski W, Wu H, Moulton KS, Kalla K, Glass CK. Scavenger receptor A gene regulatory elements target gene expression to macrophages and to foam cells of atherosclerotic lesions. Proc Natl Acad Sci USA 1995; 92 : 5391–5. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.