Free Access
Issue
Med Sci (Paris)
Volume 17, Number 11, Novembre 2001
Page(s) 1120 - 1128
Section Articles de Synthèse
DOI https://doi.org/10.1051/medsci/200117111120
Published online 15 November 2001
  1. Tacchini-Cottier F, Zweifel C, Belkaid Y, et al. An immunomodulatory function for neutrophils during the induction of a CD4+ Th2 response in BALB/c mice infected with Leishmania major. J Immunol 2000; 165 : 2628–36. [Google Scholar]
  2. Rosenthal LA, Sutterwala FS, Kehrli ME, Mosser DM. Leishmania major-human macrophage interactions : cooperation between Mac-1 (CD11b/CD18) and complement receptor type 1 (CD35) in promastigote adhesion. Infect Immun 1996; 64 : 2206–15. [Google Scholar]
  3. Zilberstein D, Shapira M. The role of pH and temperature in the development of Leishmania parasites. Annu Rev Microbiol 1994; 48 : 449–70. [Google Scholar]
  4. Turco SJ. Adversarial relationship between the Leishmania lipophosphoglycan and protein kinase C of host macrophages. Parasite Immunol 1999; 21 : 597–600. [Google Scholar]
  5. Belkaid Y, Butcher B, Sacks DL. Analysis of cytokine production by inflammatory mouse macrophages at the single-cell level : selective impairment of IL-12 induction in Leishmania-infected cells. Eur J Immunol 1998; 28 : 1389–400. [Google Scholar]
  6. Moll H, Langerhans cells transport Leishmania major. Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells. Eur J Immunol 1993; 23 : 1595–601. [Google Scholar]
  7. von Stebut E, Belkaid Y, Jakob T, Sacks DL, Udey MC. Uptake of Leishmania major amastigotes results in activation and interleukin-12 release from murine skin-derived dendritic cells : implications for the initiation of anti-Leishmania immunity. J Exp Med 1998; 188 : 1547–52. [Google Scholar]
  8. Malherbe L, Filippi C, Julia V, et al. Selective activation and expansion of high-affinity CD4+ T cells in resistant mice upon infection with Leishmania major. Immunity 2000; 13 : 771–82. [Google Scholar]
  9. Reiner SL, Locksley RM. The regulation of immunity to Leishmania major. Annu Rev Immunol 1995; 13 : 151–77. [Google Scholar]
  10. Lanzavecchia A, Sallusto F. From synapses to immunological memory : the role of sustained T cell stimulation. Curr Opin Immunol 2000; 12 : 92–8. [Google Scholar]
  11. Corry DB SL, Reiner SL, Linsley PS, Locksley RM. Differential effects of blockade of CD28-B7 on the development of Th1 or Th2 effector cells in experimental leishmaniasis. J Immunol 1994; 153 : 4142–8. [Google Scholar]
  12. Akiba H, Miyahira Y, Atsuta M, et al. Critical contribution of OX40 ligand to T helper cell type 2 differentiation in experimental leishmaniasis. J Exp Med 2000; 191 : 375–80. [Google Scholar]
  13. Campbell KA, Ovendale PJ, Kennedy MK, Fanslow WC, Reed SG, Maliszewski CR. CD40 ligand is required for protective cellmediated immunity to Leishmania major. Immunity 1996; 4 : 283–9. [Google Scholar]
  14. Sypek JP, Chung CL, Mayor SE, et al. Resolution of cutaneous leishmaniasis : interleukin-12 initiates a protective T helper type 1 immune response. J Exp Med 1993; 177 : 1797–802. [Google Scholar]
  15. Scharton TM, Scott P. Natural killer cells are a source of interferon gamma that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J Exp Med 1993; 178 : 567–77. [Google Scholar]
  16. Robinson D, Shibuya K, Mui A, et al. IGIF does not drive Th1 development but synergizes with IL-12 for IFN-γ production and activates IRAK and NFκB. Immunity 1997; 7 : 571–81. [Google Scholar]
  17. Wei XQ, Leung BP, Niedbala W, et al. Altered immune responses and susceptibility to Leishmania major and Staphylococcus aureus infection in IL-18-deficient mice. J Immunol 1999; 163 : 2821–8. [Google Scholar]
  18. Conceicao-Silva F, Hahne M, Schroter M, Louis J, Tschopp J. The resolution of lesions induced by Leishmania major in mice requires a functional Fas (APO-1, CD95) pathway of cytotoxicity. Eur J Immunol 1998; 28 : 237–45. [Google Scholar]
  19. Bogdan C, Rollinghoff M, Diefenbach A. The role of nitric oxide in innate immunity. Immunol Rev 2000; 173 : 17–26. [Google Scholar]
  20. Stenger S, Thuring H, Rollinghoff M, Bogdan C. Tissue expression of inducible nitric oxide synthase is closely associated with resistance to Leishmania major. J Exp Med 1994; 180 : 783–93. [Google Scholar]
  21. Wei XQ, Charles IG, Smith A, et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 1995; 375 : 408–11. [Google Scholar]
  22. Aebischer T, Moody SF, Handman E. Persistence of virulent Leishmania major in murine cutaneous leishmaniasis : a possible hazard for the host. Infect Immun 1993; 61 : 220–6. [Google Scholar]
  23. Bogdan C, Donhauser N, Doring R, Rollinghoff M, Diefenbach A, Rittig MG. Fibroblasts as host cells in latent leishmaniasis. J Exp Med 2000; 191 : 2121–30. [Google Scholar]
  24. Park AY, Hondowicz BD, Scott P. IL-12 Is Required to maintain a Th1 response during Leishmania major infection. J Immunol 2000; 165 : 896–902. [Google Scholar]
  25. Roberts LJ, Baldwin TM, Curtis JM, Handman E, Foote SJ. Resistance to Leishmania major is linked to the H2 region on chromosome 17 and to chromosome 9. J Exp Med 1997; 185 : 1705–10. [Google Scholar]
  26. Beebe AM, Mauze S, Schork NJ, Coffman RL. Serial backcross mapping of multiple loci associated with resistance to Leishmania major in mice. Immunity 1997; 6 : 551–7. [Google Scholar]
  27. Shankar AH, Titus EG. T cell and non-T cell compartments can independently determine resistance to Leishmania major. J Exp Med 1995; 181 : 845–55. [Google Scholar]
  28. Scharton-Kersten T, Afonso LC, Wysocka M, Trinchieri G, Scott P. IL-12 is required for natural killer cell activation and subsequent T helper 1 cell development in experimental leishmaniasis. J Immunol 1995; 154 : 5320–30. [Google Scholar]
  29. Vester B, Muller K, Solbach W, Laskay T. Early gene expression of NK cell-activating chemokines in mice resistant to Leishmania major. Infect Immun 1999; 67 : 3155–9. [Google Scholar]
  30. Laskay T, Diefenbach A, Rollinghoff M, Solbach W. Early parasite containment is decisive for resistance to Leishmania major infection. Eur J Immunol 1995; 25 : 2220–7. [Google Scholar]
  31. Launois P, Maillard I, Pingel S, et al. IL-4 rapidly produced by Vβ4 Vα8 CD4+ T cells instructs Th2 development and susceptibility to Leishmania major in BALB/c mice. Immunity 1997; 6 : 541–9. [Google Scholar]
  32. Julia V, Rassoulzadegan M, Glaichenhaus N. Resistance to Leishmania major induced by tolerance to a single antigen. Science 1996; 274 : 421–3. [Google Scholar]
  33. Julia V, McSorley SS, Malherbe L, et al. Priming by microbial antigens from the intestinal flora determines the ability of CD4+ T cells to rapidly secrete IL-4 in BALB/c mice infected with Leishmania major. J Immunol 2000; 165 : 5637–45. [Google Scholar]
  34. Bix M, Wang ZE, Thiel B, Schork NJ, Locksley RM. Genetic regulation of commitment to interleukin-4 production by a CD4+ T cell-intrinsic mechanism. J Exp Med 1998; 188 : 2289–99. [Google Scholar]
  35. Himmelrich H, Launois P, Maillard I, et al. In BALB/c mice, IL-4 production during the initial phase of infection with Leishmania major is necessary and sufficient to instruct Th2 cell development resulting in progressive disease. J Immunol 2000; 164 : 4819–25. [Google Scholar]
  36. Guler ML, Jacobson NG, Gubler U, Murphy KM. T cell genetic background determines maintenance of IL-12 signaling : effects on BALB/c and B10.D2 T helper cell type 1 phenotype development. J Immunol 1997; 159 : 1767–74. [Google Scholar]
  37. Guler ML, Gorham JD, Dietrich WF, et al. Tpm1, a locus controlling IL-12 responsiveness, acts by a cell-autonomous mechanism. J Immunol 1999; 162 : 1339–47. [Google Scholar]
  38. Vouldoukis I, Becherel PA, Riveros-Moreno V, et al. Interleukin-10 and interleukin-4 inhibit intracellular killing of Leishmania infantum and Leishmania major by human macrophages by decreasing nitric oxide generation. Eur J Immunol 1997; 27 : 860–5. [Google Scholar]
  39. Li J, Hunter CA Farrell JP. Anti-TGF-β treatment promotes rapid healing of Leishmania major infection in mice by enhancing in vivo nitric oxide production. J Immunol 1999; 162 : 974–9. [Google Scholar]
  40. Doherty TM, Coffman RL. Ability of macrophage subsets to transfer resistance to murine leishmaniasis is dependent on IL-12 production. Eur J Immunol 1999; 29 : 522–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.