Accès gratuit
Med Sci (Paris)
Volume 17, Numéro 11, Novembre 2001
Page(s) 1120 - 1128
Section Articles de Synthèse
Publié en ligne 15 novembre 2001
  1. Tacchini-Cottier F, Zweifel C, Belkaid Y, et al. An immunomodulatory function for neutrophils during the induction of a CD4+ Th2 response in BALB/c mice infected with Leishmania major. J Immunol 2000; 165 : 2628–36. [Google Scholar]
  2. Rosenthal LA, Sutterwala FS, Kehrli ME, Mosser DM. Leishmania major-human macrophage interactions : cooperation between Mac-1 (CD11b/CD18) and complement receptor type 1 (CD35) in promastigote adhesion. Infect Immun 1996; 64 : 2206–15. [Google Scholar]
  3. Zilberstein D, Shapira M. The role of pH and temperature in the development of Leishmania parasites. Annu Rev Microbiol 1994; 48 : 449–70. [Google Scholar]
  4. Turco SJ. Adversarial relationship between the Leishmania lipophosphoglycan and protein kinase C of host macrophages. Parasite Immunol 1999; 21 : 597–600. [Google Scholar]
  5. Belkaid Y, Butcher B, Sacks DL. Analysis of cytokine production by inflammatory mouse macrophages at the single-cell level : selective impairment of IL-12 induction in Leishmania-infected cells. Eur J Immunol 1998; 28 : 1389–400. [Google Scholar]
  6. Moll H, Langerhans cells transport Leishmania major. Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells. Eur J Immunol 1993; 23 : 1595–601. [Google Scholar]
  7. von Stebut E, Belkaid Y, Jakob T, Sacks DL, Udey MC. Uptake of Leishmania major amastigotes results in activation and interleukin-12 release from murine skin-derived dendritic cells : implications for the initiation of anti-Leishmania immunity. J Exp Med 1998; 188 : 1547–52. [Google Scholar]
  8. Malherbe L, Filippi C, Julia V, et al. Selective activation and expansion of high-affinity CD4+ T cells in resistant mice upon infection with Leishmania major. Immunity 2000; 13 : 771–82. [Google Scholar]
  9. Reiner SL, Locksley RM. The regulation of immunity to Leishmania major. Annu Rev Immunol 1995; 13 : 151–77. [Google Scholar]
  10. Lanzavecchia A, Sallusto F. From synapses to immunological memory : the role of sustained T cell stimulation. Curr Opin Immunol 2000; 12 : 92–8. [Google Scholar]
  11. Corry DB SL, Reiner SL, Linsley PS, Locksley RM. Differential effects of blockade of CD28-B7 on the development of Th1 or Th2 effector cells in experimental leishmaniasis. J Immunol 1994; 153 : 4142–8. [Google Scholar]
  12. Akiba H, Miyahira Y, Atsuta M, et al. Critical contribution of OX40 ligand to T helper cell type 2 differentiation in experimental leishmaniasis. J Exp Med 2000; 191 : 375–80. [Google Scholar]
  13. Campbell KA, Ovendale PJ, Kennedy MK, Fanslow WC, Reed SG, Maliszewski CR. CD40 ligand is required for protective cellmediated immunity to Leishmania major. Immunity 1996; 4 : 283–9. [Google Scholar]
  14. Sypek JP, Chung CL, Mayor SE, et al. Resolution of cutaneous leishmaniasis : interleukin-12 initiates a protective T helper type 1 immune response. J Exp Med 1993; 177 : 1797–802. [Google Scholar]
  15. Scharton TM, Scott P. Natural killer cells are a source of interferon gamma that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J Exp Med 1993; 178 : 567–77. [Google Scholar]
  16. Robinson D, Shibuya K, Mui A, et al. IGIF does not drive Th1 development but synergizes with IL-12 for IFN-γ production and activates IRAK and NFκB. Immunity 1997; 7 : 571–81. [Google Scholar]
  17. Wei XQ, Leung BP, Niedbala W, et al. Altered immune responses and susceptibility to Leishmania major and Staphylococcus aureus infection in IL-18-deficient mice. J Immunol 1999; 163 : 2821–8. [Google Scholar]
  18. Conceicao-Silva F, Hahne M, Schroter M, Louis J, Tschopp J. The resolution of lesions induced by Leishmania major in mice requires a functional Fas (APO-1, CD95) pathway of cytotoxicity. Eur J Immunol 1998; 28 : 237–45. [Google Scholar]
  19. Bogdan C, Rollinghoff M, Diefenbach A. The role of nitric oxide in innate immunity. Immunol Rev 2000; 173 : 17–26. [Google Scholar]
  20. Stenger S, Thuring H, Rollinghoff M, Bogdan C. Tissue expression of inducible nitric oxide synthase is closely associated with resistance to Leishmania major. J Exp Med 1994; 180 : 783–93. [Google Scholar]
  21. Wei XQ, Charles IG, Smith A, et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 1995; 375 : 408–11. [Google Scholar]
  22. Aebischer T, Moody SF, Handman E. Persistence of virulent Leishmania major in murine cutaneous leishmaniasis : a possible hazard for the host. Infect Immun 1993; 61 : 220–6. [Google Scholar]
  23. Bogdan C, Donhauser N, Doring R, Rollinghoff M, Diefenbach A, Rittig MG. Fibroblasts as host cells in latent leishmaniasis. J Exp Med 2000; 191 : 2121–30. [Google Scholar]
  24. Park AY, Hondowicz BD, Scott P. IL-12 Is Required to maintain a Th1 response during Leishmania major infection. J Immunol 2000; 165 : 896–902. [Google Scholar]
  25. Roberts LJ, Baldwin TM, Curtis JM, Handman E, Foote SJ. Resistance to Leishmania major is linked to the H2 region on chromosome 17 and to chromosome 9. J Exp Med 1997; 185 : 1705–10. [Google Scholar]
  26. Beebe AM, Mauze S, Schork NJ, Coffman RL. Serial backcross mapping of multiple loci associated with resistance to Leishmania major in mice. Immunity 1997; 6 : 551–7. [Google Scholar]
  27. Shankar AH, Titus EG. T cell and non-T cell compartments can independently determine resistance to Leishmania major. J Exp Med 1995; 181 : 845–55. [Google Scholar]
  28. Scharton-Kersten T, Afonso LC, Wysocka M, Trinchieri G, Scott P. IL-12 is required for natural killer cell activation and subsequent T helper 1 cell development in experimental leishmaniasis. J Immunol 1995; 154 : 5320–30. [Google Scholar]
  29. Vester B, Muller K, Solbach W, Laskay T. Early gene expression of NK cell-activating chemokines in mice resistant to Leishmania major. Infect Immun 1999; 67 : 3155–9. [Google Scholar]
  30. Laskay T, Diefenbach A, Rollinghoff M, Solbach W. Early parasite containment is decisive for resistance to Leishmania major infection. Eur J Immunol 1995; 25 : 2220–7. [Google Scholar]
  31. Launois P, Maillard I, Pingel S, et al. IL-4 rapidly produced by Vβ4 Vα8 CD4+ T cells instructs Th2 development and susceptibility to Leishmania major in BALB/c mice. Immunity 1997; 6 : 541–9. [Google Scholar]
  32. Julia V, Rassoulzadegan M, Glaichenhaus N. Resistance to Leishmania major induced by tolerance to a single antigen. Science 1996; 274 : 421–3. [Google Scholar]
  33. Julia V, McSorley SS, Malherbe L, et al. Priming by microbial antigens from the intestinal flora determines the ability of CD4+ T cells to rapidly secrete IL-4 in BALB/c mice infected with Leishmania major. J Immunol 2000; 165 : 5637–45. [Google Scholar]
  34. Bix M, Wang ZE, Thiel B, Schork NJ, Locksley RM. Genetic regulation of commitment to interleukin-4 production by a CD4+ T cell-intrinsic mechanism. J Exp Med 1998; 188 : 2289–99. [Google Scholar]
  35. Himmelrich H, Launois P, Maillard I, et al. In BALB/c mice, IL-4 production during the initial phase of infection with Leishmania major is necessary and sufficient to instruct Th2 cell development resulting in progressive disease. J Immunol 2000; 164 : 4819–25. [Google Scholar]
  36. Guler ML, Jacobson NG, Gubler U, Murphy KM. T cell genetic background determines maintenance of IL-12 signaling : effects on BALB/c and B10.D2 T helper cell type 1 phenotype development. J Immunol 1997; 159 : 1767–74. [Google Scholar]
  37. Guler ML, Gorham JD, Dietrich WF, et al. Tpm1, a locus controlling IL-12 responsiveness, acts by a cell-autonomous mechanism. J Immunol 1999; 162 : 1339–47. [Google Scholar]
  38. Vouldoukis I, Becherel PA, Riveros-Moreno V, et al. Interleukin-10 and interleukin-4 inhibit intracellular killing of Leishmania infantum and Leishmania major by human macrophages by decreasing nitric oxide generation. Eur J Immunol 1997; 27 : 860–5. [Google Scholar]
  39. Li J, Hunter CA Farrell JP. Anti-TGF-β treatment promotes rapid healing of Leishmania major infection in mice by enhancing in vivo nitric oxide production. J Immunol 1999; 162 : 974–9. [Google Scholar]
  40. Doherty TM, Coffman RL. Ability of macrophage subsets to transfer resistance to murine leishmaniasis is dependent on IL-12 production. Eur J Immunol 1999; 29 : 522–9. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.