Accès gratuit
Numéro
Med Sci (Paris)
Volume 17, Numéro 11, Novembre 2001
Page(s) 1129 - 1138
Section Articles de Synthèse
DOI https://doi.org/10.1051/medsci/200117111129
Publié en ligne 15 novembre 2001
  1. Vahedi K, Bouhnik Y, Matuchansky C. Maladie cœliaque de l’adulte. Gastroenterol Clin Biol 2001; 25 : 485–94.
  2. Dieterich W, Ehnis T, Bauer M, et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 1997; 3 : 797–801.
  3. Marsh MN. Gluten, Major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (celiac sprue). Gastroenterology 1992; 102 : 330–54.
  4. Ventura A, Magazzu G, Greco L. Duration of exposure to gluten and risk for autoimmune disorders in patients with celiac disease. SIGEP, Study group for autoimmune disorders in celiac disease. Gastroenterology 1999; 117 : 297–303.
  5. Sollid LM. Molecular basis of celiac disease. Annu Rev Immunol 2000; 18 : 53–81.
  6. Lie BA, Sollid LM, Ascher H, et al. A gene telomeric of the HLA class I region is involved in predisposition to both type 1 diabetes and coeliac disease. Tissue Antigens 1999; 54 : 162–8.
  7. Petronzelli F, Bonamico M, Ferrante P, et al. Genetic contribution of the HLA region to the familial clustering of coeliac disease. Ann Hum Genet 1997; 61 : 307–17.
  8. King AL, Yiannakou JY, Brett PM, et al. A genome-wide family-based linkage study of coeliac disease. Ann Hum Genet 2000; 64 : 479–90.
  9. Naluai AT, Nilsson S, Samuelsson L, et al. The CTLA4/CD28 gene region on chromosome 2q33 confers susceptibility to celiac disease in a way possibly distinct from that of type 1 diabetes and other chronic inflammatory disorders. Tissue Antigens 2000; 56 : 350–5.
  10. Kouki T, Sawai Y, Gardine CA, Fisfalen ME, Alegre ML, DeGroot LJ. CTLA-4 gene polymorphism at position 49 in exon 1 reduces the inhibitory function of CTLA-4 and contributes to the pathogenesis of Graves’ disease. J Immunol 2000; 165 : 6606–11.
  11. Wieser H. Relation between gliadin structure and coeliac toxicity. Acta Paediatr 1996; 412 (suppl) : 3–9.
  12. Ivarsson A, Persson LA, Nystrom L, et al. Epidemic of coeliac disease in Swedish children. Acta Paediatr 2000 : 89 : 165–71.
  13. Monteleone G, Pender SL, Alstead E, Hauer AC, Lionetti P, MacDonald TT. Role of interferon alpha in promoting T helper cell type 1 responses in the small intestine in coeliac disease. Gut 2001; 48 : 425–9.
  14. Ferguson A, Murray D. Quantitation of intraepithelial lymphocytes in human jejunum. Gut 1971; 12 : 988–94.
  15. Marsh M, Loft D, Garner V, Gordon D. Time/dose responses of coeliac mucosae to graded oral challenges with Frazer’s fraction III of gliadin. Eur J Gastroenterol Hepatol 1992; 4 : 667–73.
  16. Kontakou M, Przemioslo R, Sturgess R, et al. Cytokine mRNA expression in the mucosa of treated coeliac patients after wheat peptide challenge. Gut 1995; 37 : 52-
  17. Arentz-Hansen H, Korner R, Molberg O, et al. The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J Exp Med 2000; 191 : 603–12.
  18. Anderson RP, Degano P, Godkin AJ, Jewell DP, Hill AV. In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat Med 2000; 6 : 337–42.
  19. Nilsen EM, Jahnsen F, Lundin K, et al. Gluten induces an intestinal cytokine response strongly dominated by interferon gamma in patients with celiac disease. Gastroenterology 1998; 115 : 551–63.
  20. Przemioslo R, Lundin K, Sollid L, Nelufer J, Ciclitira P. Histological changes in small bowel mucosa induced by gliadin sensitive T lymphocytes can be blocked by antiinterferon γ antibody. Gut 1995; 36: 874–9.
  21. Guy-Grand D, Disanto JP, Henchoz P, Malassis-Seris M, Vassalli P. Small bowel enteropathy : role of intraepithelial lymphocytes and of cytokines (IL-12, IFN-γ, TNF) in the induction of epithelial cell death and renewal. Eur J Immunol 1998; 28 : 730–44.
  22. Maiuri L, Ciacci C, Raia V, et al. FAS engagement drives apoptosis of enterocytes of coeliac patients. Gut 2001; 48 : 418–24.
  23. Monteleone G, MacDonald T, Wathen N, Pallone F, Pender S. Enhancing lamina propria TH1 responses with interleukin 12 produces severe tissue injury. Gastroenterology 1999; 117: 1069–77.
  24. Franco A, Appella E, Kagnoff M, et al. Peripheral T cell response to A-gliadin in celiac disease : differential processing and presentation capacities of Epstein-Barrtransformed B cells and fibroblasts. Clin Immunol Immunopathol 1994; 71 : 75–81.
  25. Gjertsen H, Sollid L, Thorsby E, Lundin K. T cells from the peripheral blood of coeliac disease patients recognize gluten antigens when presented by HLA-DR, -DQ, or DP molecules. Scand J Immunol 1994; 39: 567–74.
  26. Molberg O, McAdam S, Korner R, et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gutderived T cells in celiac disease. Nat Med 1998; 4 : 713–7.
  27. Bruce S, Bjarnason I, Petratos K. Human jejunal transglutaminase : demonstration of activity, enzyme kinetics, and substrate specificity with special relation to gliadin and coeliac disease. Clin Sci 1985; 68 : 573–7.
  28. Molberg O, McAdam S, Lundin KE, et al. T cells from celiac disease lesions recognize gliadin epitopes deamidated in situ by endogenous tissue transglutaminase. Eur J Immunol 2001; 31: 1317–23.
  29. Molberg O, Kett K, Scott H, Thorsby E, Sollid L, Lundin K. Gliadin specific, HLA DQ2-restricted T cells are commonly found in small intestinal biopsies from coeliac disease patients, but not from controls. Scand J Immunol 1997; 46: 103–9.
  30. Sturgess R, Day P, Ellis HJ, et al. Wheat peptide challenge in coeliac disease. Lancet 1994; 343 : 758–61.
  31. Maiuri L, Auricchio S, Coletta S, et al. Blockage of T-cell costimulation inhibits T-cell action in celiac disease. Gastroenterology 1998; 115 :564–72.
  32. Kutlu T, Brousse N, Rambaud C, Le Deist F, Schmitz J, Cerf-Bensussan N. Numbers of T cell receptor (TCR) α/β+ but not of TCR γ/δ+ intraepithelial lymphocytes correlate with the grade of villous atrophy in coeliac patients on a long term normal diet. Gut 1993; 34: 208–14.
  33. Iltanen S, Holm K, Ashorn M, Ruuska T, Laippala P, Mäki M. Changing jejunal γδ T cell receptor (TCR)-bearing intraepithelial lymphocyte density in coeliac disease. Clin Exp Immunol 1999; 117: 51–5.
  34. Jabri B, de Serre NP, Cellier C, et al. Selective expansion of intraepithelial lymphocytes expressing the HLA-E-specific natural killer receptor CD94 in celiac disease. Gastroenterology 2000; 118: 867–79.
  35. Groh V, Rhinehart R, Randolph-Habecker J, Topp M, Riddell S, Spies T. Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virusinfected cells. Nat Immunol 2001; 2: 255–60.
  36. Cosman D, Mullberg J, Sutherland C, et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 2001; 14: 123–33.
  37. Maiuri L, Ciacci C, Vacca L, et al. IL-15 drives the specific migration of CD94+ and TCR-gammadelta+ intraepithelial lymphocytes in organ cultures of treated celiac patients. Am J Gastroenterol 2001; 96: 150–6.
  38. Porter B, Malek T. IL-2Rβ/IL-7Rα doubly deficient mice recapitulate the thymic and intraepithelial lymphocyte (IEL) developmental defects of γc-/- mice: roles for both IL-2 and IL-15 in CD8αα IEL Development. J Immunol 1999; 163: 5906–12.
  39. Ku CC, Kappler J, Marrack P. The growth of the very large CD8+ T cell clones in older mice is controlled by cytokines. J Immunol 2001; 166: 2186–93.
  40. Ebert EC. 1998. Interleukin 15 is a potent stimulant of intraepithelial lymphocytes. Gastroenterology 1998; 115 : 1439–45.
  41. Fehniger T, Suzuki K, Ponnapan A, et al. Fatal leukemia in interleukin 15 transgenic mice follows early expansion in natural killer and memory phenotype CD8+ T cells. J Exp Med 2001; 193 : 219–31.
  42. Maiuri L, Ciacci C, Auricchio S, Brown V, Quaratino S, Londei M. Interleukin 15 mediates epithelial changes in celiac disease. Gastroenterology 2000; 119: 996–1006.
  43. Spencer J, Cerf-Bensussan N, Jarry A, et al. Enteropathy-associated T cell lymphoma (malignant histiocytosis of the intestine) is recognized by a monoclonal antibody (HML-1) that defines a membrane molecule on human mucosal lymphocytes. Am J Pathol 1988; 132: 1–5.
  44. Cellier C, Patey N, Mauvieux L, et al. Abnormal intestinal intraepithelial lymphocytes in refractory sprue. Gastroenterology 1998; 114: 471–9.
  45. Cellier C, Delabesse E, Helmer C, et al. Refractory sprue, coeliac disease, and enteropathy-associated T-cell lymphoma. French coeliac disease study group. Lancet 2000; 356: 203–8.
  46. Oberhuber G, Vogelsang H, Stolte M, Muthenthaler S, Kummer A, Radaszkiewicz T. Evidence that intestinal intraepithelial lymphocytes are activated cytotoxic T cells in celiac disease but not in giardiasis. Am J Pathol 1996; 148: 1351–7.
  47. Hayday A, Geng L. γδ cells regulate autoimmunity. Curr Opin Immunol 1997; 9 : 884–9.
  48. Iltanen S, Collin P, Korpela M, et al. Celiac disease and markers of celiac disease latency in patients with primary Sjogren’s syndrome. Am J Gastroenterol 1999; 94 : 1042–6.
  49. Piacentini M, Colizzi V. Tissue transglutaminase : apoptosis versus autoimmunity. Immunol Today 1999; 20 : 130–4.
  50. Sollid LM, Molberg O, McAdam S, Lundin KE. Autoantibodies in coeliac disease : tissue transglutaminase-guilt by association ? Gut 1997; 41 : 851–2.
  51. Marzari R, Sblattero D, Florian F, et al. Molecular dissection of the tissue transglutaminase autoantibody response in celiac disease. J Immunol 2001; 166 : 4170–6.
  52. Halttunen T, Maki M. Serum immunoglobulin A from patients with celiac disease inhibits human T84 intestinal crypt epithelial cell differentiation. Gastroenterology 1999; 116 : 566–72.
  53. Fasano A, Not T, Wang W, et al. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet 2000; 355 : 1518–9.
  54. Zimmer KP, Poremba C, Weber P, Ciclitira PJ, Harms E. Translocation of gliadin into HLA-DR antigen containing lysosomes in coeliac disease enterocytes. Gut 1995; 36 : 703–9.
  55. Newberry RD, Stenson WF, Lorenz RG. Cyclooxygenase-2-dependent arachidonic acid metabolites are essential modulators of the intestinal immune response to dietary antigen. Nat Med 1999; 5 : 900–6.
  56. Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000; 192 : 303–10.
  57. Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 2000; 192 : 295–302.
  58. Shevach EM. Certified professionals : CD4(+)CD25(+) suppressor T cells. J Exp Med 2001; 193 : F41–6.
  59. Gallucci S, Matzinger P. Danger signals : SOS to the immune system. Curr Opin Immunol 2001; 13 : 114–9.
  60. Biron CA. Interferons α and β as immune regulators : a new look. Immunity 2001; 14 : 661–4.
  61. Monteleone G, Pender SLF, Wathen NC, MacDonald TT. Interferon-α drives Tcell mediated immunopathology in the intestine. Eur J Immunol 2001; 31 : 22–47.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.