Issue |
Med Sci (Paris)
Volume 22, Number 12, Décembre 2006
|
|
---|---|---|
Page(s) | 1053 - 1060 | |
Section | M/S revues | |
DOI | https://doi.org/10.1051/medsci/200622121053 | |
Published online | 15 December 2006 |
Le riborégulateur adénine
Un nouveau mode de régulation génétique
The adenine riboswitch: a new gene regulation mechanism
Département de Biologie, Faculté des sciences, Université de Sherbrooke, 2500, boulevard de l’Université, Sherbrooke (Québec), J1K 2R1 Canada
*
Daniel.Lafontaine@USherbrooke.ca
Plusieurs résultats récents montrent que l’ARN peut réguler l’expression d’un gène en absence de protéines. La liaison d’un métabolite à une séquence spécifique d’ARN, nommée riborégulateur, engendre la réorganisation structurale de cette dernière, permettant ainsi la régulation du gène auquel elle est associée. Les riborégulateurs ont été identifiés dans les trois royaumes du vivant, suggérant ainsi que ces ARN seraient des ancêtres d’un monde primitif constitué exclusivement d’ARN (RNA world hypothesis).L’énorme potentiel thérapeutique de ces molécules d’ARN est déjà exploité par plusieurs équipes de recherche puisque la grande majorité des riborégulateurs des procaryotes modulent l’expression de gènes essentiels à leur survie. En effet, des recherches intensives sont en cours afin de comprendre les interactions entre les riborégulateurs et leur métabolite respectif, ce qui pourrait mener à l’élaboration d’analogues permettant la modulation artificielle de gènes essentiels présents chez des pathogènes résistants aux techniques d’éradication traditionnelles. Notre synthèse porte sur le riborégulateur adénine, l’un des plus petits riborégulateurs connus.
Abstract
It has long been known that gene regulation is mostly achieved via protein-nucleic acid interactions. However, the role of RNA factors in gene control has been recently growing given the implication of new RNA-based gene regulation mechanisms such as microRNAs and related short-interfering RNAs gene expression inactivation mechanisms. Recent studies have demonstrated that the involvement of RNA in fundamental gene-control processes is even more extensive. Prokaryotic messenger RNAs carry highly structured domains known as riboswitches within their 5’-untranslated regions. Each riboswitch is able to bind with high specificity their cellular target metabolite, without the involvement of a protein cofactor. Upon metabolite binding, the messenger RNA undergoes structural change that will ultimately lead to the modulation of its genetic expression. Riboswitches can alter gene expression at the level of transcription attenuation ortranslation initiation, and can up- or down-regulate gene expression by harnessing appropriate changes in the mRNA structure. Here, we provide an overview of the adenine riboswitch, one of the smallest riboswitch and one of the few that activates gene expression upon ligand binding. Several crystal structures have been obtained for the ligand-binding domain of this riboswitch providing us with an unprecedented glimpse about how riboswitches use their ligand to regulate gene expression. Moreover, mechanistic studies have recently shed light on the transcriptional regulation mechanisms of the adenine riboswitch suggesting that riboswitches may rely on the kinetics of ligand binding and the speed of RNA transcription, rather than simple ligand affinity. Riboswitches are particularly interesting because RNA-ligand interactions are potentially very important in the elaboration of antimicrobial agents.
© 2006 médecine/sciences - Inserm / SRMS
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.