Free Access
Issue |
Med Sci (Paris)
Volume 39, Novembre 2023
Les Cahiers de Myologie
|
|
---|---|---|
Page(s) | 54 - 57 | |
Section | Mises au point | |
DOI | https://doi.org/10.1051/medsci/2023146 | |
Published online | 17 November 2023 |
- Roman W, Gomes ER. Nuclear positioning in skeletal muscle. Semin Cell Dev Biol 2018 ; 82 : 51–56. [CrossRef] [PubMed] [Google Scholar]
- Gundersen K, Bruusgaard JC. Nuclear domains during muscle atrophy: nuclei lost or paradigm lost?. J Physiol 2008 ; 586 : 2675–2681. [CrossRef] [PubMed] [Google Scholar]
- Kirby TJ, Lammerding J. Emerging views of the nucleus as a cellular mechanosensor. Nat Cell Biol 2018 ; 20 : 373–381. [CrossRef] [PubMed] [Google Scholar]
- Janin A, Gache V. Nesprins and Lamins in Health and Diseases of Cardiac and Skeletal Muscles. Front Physiol 2018 ; 9 : 1277. [CrossRef] [PubMed] [Google Scholar]
- Gache V, Gomes ER, Cadot B. Microtubule motors involved in nuclear movement during skeletal muscle differentiation. Mol Biol Cell 2017 ; 28 : 865–874. [CrossRef] [PubMed] [Google Scholar]
- Goodson HV, Jonasson EM. Microtubules and Microtubule-Associated Proteins. Cold Spring Harb Perspect Biol 2018 ; 10 : a022608. [CrossRef] [PubMed] [Google Scholar]
- Hawkins T, Mirigian M, Selcuk Yasar M, et al. Mechanics of microtubules. J Biomech 2010 ; 43 : 23–30. [CrossRef] [PubMed] [Google Scholar]
- Rahkila P, Väänänen K, Saraste J, et al. Endoplasmic reticulum to Golgi trafficking in multinucleated skeletal muscle fibers. Exp Cell Res 1997 ; 234 : 452–464. [CrossRef] [PubMed] [Google Scholar]
- McIntosh JR. Mitosis. Cold Spring Harb Perspect. Biol 2016 ; 8 : a023218. [Google Scholar]
- Metzger T, Gache V, Xu M, et al. MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function. Nature 2012 ; 484 : 120–124. [CrossRef] [PubMed] [Google Scholar]
- Folker ES, Baylies MK. Nuclear positioning in muscle development and disease. Front Physiol 2013 ; 4 : 363. [CrossRef] [PubMed] [Google Scholar]
- Cadot B, Gache V, Vasyutina E, et al. Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3. EMBO Rep 2012 ; 13 : 741–749. [CrossRef] [PubMed] [Google Scholar]
- Ghasemizadeh A, Christin E, Guiraud A, et al. MACF1 controls skeletal muscle function through the microtubule-dependent localization of extra-synaptic myonuclei and mitochondria biogenesis. Elife 2021; 10 : e70490. [CrossRef] [PubMed] [Google Scholar]
- Bugnard E, Zaal KJM, Ralston E. Reorganization of microtubule nucleation during muscle differentiation. Cell Motil Cytoskeleton 2005 ; 60 : 1–13. [CrossRef] [PubMed] [Google Scholar]
- Wang S, Reuveny A, Volk T. Nesprin provides elastic properties to muscle nuclei by cooperating with spectraplakin and EB1. J Cell Biol 2015 ; 209 : 529–538. [CrossRef] [PubMed] [Google Scholar]
- Prins KW, Humston JL, Mehta A, et al. Dystrophin is a microtubule-associated protein. J Cell Biol 2009 ; 186 : 363–369. [CrossRef] [PubMed] [Google Scholar]
- Oddoux S, Randazzo D, Kenea A, et al. Misplaced Golgi Elements Produce Randomly Oriented Microtubules and Aberrant Cortical Arrays of Microtubules in Dystrophic Skeletal Muscle Fibers. Front Cell Dev Biol 2019 ; 7 : 176. [CrossRef] [PubMed] [Google Scholar]
- Judge LM, Haraguchiln M, Chamberlain JS. Dissecting the signaling and mechanical functions of the dystrophin-glycoprotein complex. J Cell Sci 2006 ; 119 : 1537–1546. [CrossRef] [PubMed] [Google Scholar]
- Randazzo D, Khalique U, Belanto JJ, et al. Persistent upregulation of the β-tubulin tubb6, linked to muscle regeneration, is a source of microtubule disorganization in dystrophic muscle. Hum Mol Genet 2019 ; 28 : 1117–1135. [CrossRef] [PubMed] [Google Scholar]
- Kang L, Liu Y, Jin Y, et al. Mutations of MACF1, Encoding Microtubule-Actin Crosslinking-Factor 1. Cause Spectraplakinopathy. Front Neurol 2019 ; 10 : 1335. [Google Scholar]
- Osseni A, Ravel-Chapuis A, Thomas JL, et al. HDAC6 regulates microtubule stability and clustering of AChRs at neuromuscular junctions. J Cell Biol 2020; 219 : e201901099. [CrossRef] [PubMed] [Google Scholar]
- Sanyal C, Pietsch N, Ramirez Rios S, et al. The detyrosination/re-tyrosination cycle of tubulin and its role and dysfunction in neurons and cardiomyocytes. Semin Cell Dev Biol 2023; 137 : 46–62. [CrossRef] [PubMed] [Google Scholar]
- Bruusgaard JC, Liestøl K, Gundersen K. Distribution of myonuclei and microtubules in live muscle fibers of young, middle-aged, and old mice. J Appl Physiol 2006 ; 100 : 2024–2030. [CrossRef] [PubMed] [Google Scholar]
- Jungbluth H, Wallgren-Pettersson C, Laporte J. Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 2008 ; 3 : 26. [CrossRef] [PubMed] [Google Scholar]
- Romero NB, Bitoun M. Centronuclear myopathies. Semin Pediatr Neurol 2011 ; 18 : 250–256. [CrossRef] [PubMed] [Google Scholar]
- Susman RD, Quijano-Roy S, Yang N, et al. Expanding the clinical, pathological and MRI phenotype of DNM2-related centronuclear myopathy. Neuromuscul Disord 2010 ; 20 : 229–237. [CrossRef] [PubMed] [Google Scholar]
- Bitoun M, Maugenre S, Jeannet PY, et al. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 2005 ; 37 : 1207–1209. [CrossRef] [PubMed] [Google Scholar]
- Osseni A, Ravel-Chapuis A, Belotti E, et al. Pharmacological inhibition of HDAC6 improves muscle phenotypes in dystrophin-deficient mice by downregulating TGF-β via Smad3 acetylation. Nat Commun 2022; 13 : 7108. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.