Accès gratuit
Numéro
Med Sci (Paris)
Volume 39, Novembre 2023
Les Cahiers de Myologie
Page(s) 47 - 53
Section Mises au point
DOI https://doi.org/10.1051/medsci/2023143
Publié en ligne 17 novembre 2023
  1. Volpi E, Nazemi R, Fujita S. Muscle tissue changes with aging. Curr Opin Clin Nutr Metab Care 2004 ; 7 : 405–410. [CrossRef] [PubMed] [Google Scholar]
  2. Mitchell WK, Williams J, Atherton P, et al. Sarcopenia, Dynapenia, and the Impact of Advancing Age on Human Skeletal Muscle Size and Strength; a quantitative Review. Front Physiol 2012 ; 3 : 260. [CrossRef] [PubMed] [Google Scholar]
  3. Cao L, Morley JE. Sarcopenia Is Recognized as an Independent Condition by an International Classification of Disease, Tenth Revision, Clinical Modification (ICD-10-CM) Code. J Am Med Dir Assoc 2016 ; 17 : 675–677. [CrossRef] [PubMed] [Google Scholar]
  4. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2, Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019 ; 48 : 16–31. [CrossRef] [PubMed] [Google Scholar]
  5. Gonthier R. Epidemiology, morbidity, mortality, cost to society and the individual, and main causes for falls. Bull Acad Natl Med 2014 ; 198 : 1025–1039. [PubMed] [Google Scholar]
  6. Ethgen O, Beaudart C, Buckinx F, et al. The Future Prevalence of Sarcopenia in Europe: A Claim for Public Health Action. Calcif Tissue Int 2017 ; 100 : 229–234. [CrossRef] [PubMed] [Google Scholar]
  7. Dent E, Morley JE, Cruz-Jentoft AJ, et al. International Clinical Practice Guidelines for Sarcopenia [ICFSR): Screening, Diagnosis and Management. J Nutr Health Aging 2018 ; 22 : 1148–1161. [CrossRef] [PubMed] [Google Scholar]
  8. Cannataro R, Carbone L, Petro JL, et al. Sarcopenia: Etiology, Nutritional Approaches, and miRNAs. Int J Mol Sci 2021; 22 : 9724. [CrossRef] [PubMed] [Google Scholar]
  9. Boirie Y. Physiopathological mechanism of sarcopenia. J Nutr Health Aging 2009 ; 13 : 717–723. [CrossRef] [PubMed] [Google Scholar]
  10. Dalle S, Rossmeislova L, Koppo K. The Role of Inflammation in Age-Related Sarcopenia. Front Physiol 2017 ; 8 : 1045. [CrossRef] [PubMed] [Google Scholar]
  11. Meng SJ, Yu LJ. Oxidative stress, molecular inflammation and sarcopenia. Int J Mol Sci 2010 ; 11 : 1509–1526. [CrossRef] [PubMed] [Google Scholar]
  12. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. European Working Group on Sarcopenia in Older People, Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010 ; 39 : 412–423. [CrossRef] [PubMed] [Google Scholar]
  13. Bao Z, Cui C, Chow SKH, et al. AChRs Degeneration at NMJ in Aging-Associated Sarcopenia-A Systematic Review. Front Aging Neurosci 2020; 12 : 597811. [CrossRef] [PubMed] [Google Scholar]
  14. Ham DJ, Rüegg MA. Causes and consequences of age-related changes at the neuromuscular junction. Curr Opin Physiol 2018 ; 4 : 32–39. [CrossRef] [Google Scholar]
  15. Soendenbroe C, Heisterberg MF, Schjerling P, et al. Molecular indicators of denervation in aging human skeletal muscle. Muscle Nerve 2019 ; 60 : 453–463. [CrossRef] [PubMed] [Google Scholar]
  16. Piasecki M, Ireland A, Piasecki J, et al. Failure to expand the motor unit size to compensate for declining motor unit numbers distinguishes sarcopenic from non-sarcopenic older men. J Physiol 2018 ; 596 : 1627–1637. [CrossRef] [PubMed] [Google Scholar]
  17. Gouspillou G, Picard M, Godin R, et al. Role of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in denervation-induced atrophy in aged muscle: facts and hypotheses. Longev Healthspan 2013 ; 2 : 13. [CrossRef] [PubMed] [Google Scholar]
  18. Chai RJ, Vukovic J, Dunlop S, et al. Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle. PLoS One 2011 ; 6 : e28090. [CrossRef] [PubMed] [Google Scholar]
  19. Taetzsch T, Valdez G. NMJ maintenance and repair in aging. Curr Opin Physiol 2018 ; 4 : 57–64. [CrossRef] [PubMed] [Google Scholar]
  20. Gonzalez-Freire M, De Cabo R, Studenski SA, et al. The Neuromuscular Junction: Aging at the Crossroad between Nerves and Muscle. Front Aging Neurosci 2014 ; 6 : 208. [CrossRef] [PubMed] [Google Scholar]
  21. Hepple RT, Rice CL. Innervation and neuromuscular control in ageing skeletal muscle. J Physiol 2016 ; 594 : 1965–1978. [CrossRef] [PubMed] [Google Scholar]
  22. Hettwer S, Dahinden P, Kucsera S, et al. Elevated levels of a C-terminal agrin fragment identifies a new subset of sarcopenia patients. Exp Gerontol 2013 ; 48 : 69–75. [CrossRef] [PubMed] [Google Scholar]
  23. Kang H, Tian L, Mikesh M, et al. Terminal Schwann cells participate in neuromuscular synapse remodeling during reinnervation following nerve injury. J Neurosci 2014 ; 34 : 6323–6333. [CrossRef] [PubMed] [Google Scholar]
  24. Barik A, Li L, Sathyamurthy A, et al. Schwann Cells in Neuromuscular Junction Formation and Maintenance. J Neurosci 2016 ; 36 : 9770–9781. [CrossRef] [PubMed] [Google Scholar]
  25. Aare S, Spendiff S, Vuda M, et al. Failed reinnervation in aging skeletal muscle. Skelet Muscle 2016 ; 6 : 29. [CrossRef] [PubMed] [Google Scholar]
  26. Snyder-Warwick AK, Satoh A, Santosa KB, et al. Hypothalamic Sirt1 protects terminal Schwann cells and neuromuscular junctions from age-related morphological changes. Aging Cell 2018 ; 17 : e12776. [CrossRef] [PubMed] [Google Scholar]
  27. Dumont NA, Bentzinger CF, Sincennes MC, et al. Satellite Cells and Skeletal Muscle Regeneration. Compr Physiol 2015 ; 5 : 1027–1059. [CrossRef] [PubMed] [Google Scholar]
  28. Muñoz-Cánoves P, Neves J, Sousa-Victor P. Understanding muscle regenerative decline with aging: new approaches to bring back youthfulness to aged stem cells. FEBS J 2020; 287 : 406–16. [CrossRef] [PubMed] [Google Scholar]
  29. Moiseeva V, Cisneros A, Sica V, et al. Senescence atlas reveals an aged-like inflamed niche that blunts muscle regeneration. Nature 2023; 613 : 169–78. [CrossRef] [PubMed] [Google Scholar]
  30. Conboy IM, Conboy MJ, Wagers AJ, et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005 ; 433 : 760–764. [CrossRef] [PubMed] [Google Scholar]
  31. Kadi F, Charifi N, Denis C, et al. Satellite cells and myonuclei in young and elderly women and men. Muscle Nerve 2004 ; 29 : 120–127. [CrossRef] [PubMed] [Google Scholar]
  32. Verdijk LB, Koopman R, Schaart G, et al. Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab 2007 ; 292 : E151–E157. [CrossRef] [PubMed] [Google Scholar]
  33. Keefe AC, Lawson JA, Flygare SD, et al. Muscle stem cells contribute to myofibres in sedentary adult mice. Nat Commun 2015; 6, : 7087. [CrossRef] [PubMed] [Google Scholar]
  34. Brack AS, Bildsoe H, Hughes SM. Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. J Cell Sci 2005 ; 118 : 4813–4821. [CrossRef] [PubMed] [Google Scholar]
  35. Chakkalakal JV, Jones KM, Basson MA, et al. The aged niche disrupts muscle stem cell quiescence. Nature 2012 ; 490 : 355–360. [CrossRef] [PubMed] [Google Scholar]
  36. Liu W, Klose A, Forman S, et al. Loss of adult skeletal muscle stem cells drives age-related neuromuscular junction degeneration. Elife 2017 ; 6 : e26464. [CrossRef] [PubMed] [Google Scholar]
  37. Fry CS, Lee JD, Mula J, et al. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med 2015 ; 21 : 76–80. [CrossRef] [PubMed] [Google Scholar]
  38. Bilodeau PA, Coyne ES, Wing SS. The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation. Am J Physiol Cell Physiol 2016 ; 311 : C392–C403. [CrossRef] [PubMed] [Google Scholar]
  39. Gumucio JP, Mendias CL. Atrogin-1, MuRF-1, and sarcopenia. Endocrine 2013 ; 43 : 12–21. [CrossRef] [PubMed] [Google Scholar]
  40. Altun M, Besche HC, Overkleeft HS, et al. Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. J Biol Chem 2010 ; 285 : 39597–39608. [CrossRef] [PubMed] [Google Scholar]
  41. Antuña E, Cachán-Vega C, Bermejo-Millo JC, et al. Inflammaging: Implications in Sarcopenia. Int J Mol Sci 2022; 23 : 15039. [CrossRef] [PubMed] [Google Scholar]
  42. Bian AL, Hu HY, Rong YD, et al. A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-α. Eur J Med Res 2017 ; 22 : 25. [CrossRef] [PubMed] [Google Scholar]
  43. Cuthbertson D, Smith K, Babraj J, et al. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J 2005 ; 19 : 422–424. [CrossRef] [PubMed] [Google Scholar]
  44. Guillet C, Prod’homme M, Balage M, et al. Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. FASEB J 2004 ; 18 : 1586–1587. [CrossRef] [PubMed] [Google Scholar]
  45. Balagopal P, Rooyackers OE, Adey DB, et al. Effects of aging on in vivo synthesis of skeletal muscle myosin heavy-chain and sarcoplasmic protein in humans. Am J Physiol 1997 ; 273 : E790–E800. [Google Scholar]
  46. Sartori R, Romanello V, Sandri M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun 2021; 12 : 330. [CrossRef] [PubMed] [Google Scholar]
  47. Jiao J, Demontis F. Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Curr Opin Pharmacol 2017 ; 34 : 1–6. [CrossRef] [PubMed] [Google Scholar]
  48. Masiero E, Agatea L, Mammucari C, et al. Autophagy is required to maintain muscle mass. Cell Metab 2009 ; 10 : 507–515. [CrossRef] [PubMed] [Google Scholar]
  49. Gouspillou G, Bourdel-Marchasson I, Rouland R, et al. Mitochondrial energetics is impaired in vivo in aged skeletal muscle. Aging Cell 2014 ; 13 : 39–48. [CrossRef] [PubMed] [Google Scholar]
  50. Ferri E, Marzetti E, Calvani R, et al. Role of Age-Related Mitochondrial Dysfunction in Sarcopenia. Int J Mol Sci 2020; 21 : 5236. [CrossRef] [PubMed] [Google Scholar]
  51. Seo DY, Lee SR, Kim N, et al. Age-related changes in skeletal muscle mitochondria: the role of exercise. Integr Med Res 2016 ; 5 : 182–186. [CrossRef] [PubMed] [Google Scholar]
  52. Chabi B, Ljubicic V, Menzies KJ, et al. Hood, Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell 2008 ; 7 : 2–12. [CrossRef] [PubMed] [Google Scholar]
  53. Leduc-Gaudet JP, Hussain SNA, Barreiro E, et al. Mitochondrial Dynamics and Mitophagy in Skeletal Muscle Health and Aging. Int J Mol Sci 2021; 22 : 8179. [CrossRef] [PubMed] [Google Scholar]
  54. Migliavacca E, Tay SKH, Patel HP, et al. Mitochondrial oxidative capacity and NAD+ biosynthesis are reduced in human sarcopenia across ethnicities. Nat Commun 2019 ; 10 : 5808. [CrossRef] [PubMed] [Google Scholar]
  55. Shen Y, Shi Q, Nong K, et al. Exercise for sarcopenia in older people: A systematic review and network meta-analysis. J Cachexia Sarcopenia Muscle 2023; 14 : 1199–211. [CrossRef] [PubMed] [Google Scholar]
  56. Langhammer B, Bergland A, Rydwik E. The Importance of Physical Activity Exercise among Older People. Biomed Res Int 2018 ; 2018 : 7856823. [CrossRef] [Google Scholar]
  57. Wu PY, Huang KS, Chen KM, et al. Exercise, Nutrition, and Combined Exercise and Nutrition in Older Adults with Sarcopenia: A Systematic Review and Network Meta-analysis. Maturitas 2021; 145 : 38–48. [CrossRef] [PubMed] [Google Scholar]
  58. Han L, Wu S, Hu P. The functions of sarcopenia related myokines. Transl Med Aging 2018 ; 2 : 38–41. [CrossRef] [Google Scholar]
  59. Yoo SZ, No MH, Heo JW, et al. Role of exercise in age-related sarcopenia. J Exerc Rehabil 2018 ; 14 : 551–558. [CrossRef] [PubMed] [Google Scholar]
  60. Widajanti N, Soelistijo S, Hadi U, et al. Association between Sarcopenia and Insulin-Like Growth Factor-1, Myostatin, and Insulin Resistance in Elderly Patients Undergoing Hemodialysis. J Aging Res 2022; 2022 : 1327332. [CrossRef] [Google Scholar]
  61. Vinel C, Lukjanenko L, Batut A, et al. The exerkine apelin reverses age-associated sarcopenia. Nat Med 2018 ; 24 : 1360–1371. [CrossRef] [PubMed] [Google Scholar]
  62. De Mello RGB, Dalla Corte RR, Gioscia J, et al. Effects of Physical Exercise Programs on Sarcopenia Management, Dynapenia, and Physical Performance in the Elderly: A Systematic Review of Randomized Clinical Trials. J Aging Res 2019 ; 2019 : 1959486. [PubMed] [Google Scholar]
  63. Durieux AC, Amirouche A, Banzet S, et al. Ectopic expression of myostatin induces atrophy of adult skeletal muscle by decreasing muscle gene expression. Endocrinology 2007 ; 148 : 3140–3147. [CrossRef] [PubMed] [Google Scholar]
  64. McFarlane C, Plummer E, Thomas M, et al. Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J Cell Physiol 2006 ; 209 : 501–514. [CrossRef] [PubMed] [Google Scholar]
  65. Lipina C, Kendall H, McPherron AC, et al. Mechanisms involved in the enhancement of mammalian target of rapamycin signalling and hypertrophy in skeletal muscle of myostatin-deficient mice. FEBS Lett 2010 ; 584 : 2403–2408. [CrossRef] [PubMed] [Google Scholar]
  66. Rooks D, Praestgaard J, Hariry S, et al. Treatment of Sarcopenia with Bimagrumab: Results from a Phase II, Randomized, Controlled. Proof-of-Concept Study. J Am Geriatr Soc 2017 ; 65 : 1988–1995. [CrossRef] [PubMed] [Google Scholar]
  67. Becker C, Lord SR, Studenski SA, Warden SJ, et al. STEADY Group, Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol 2015 ; 3 : 948–957. [CrossRef] [PubMed] [Google Scholar]
  68. Bragdon B, Moseychuk O, Saldanha S, et al. Bone morphogenetic proteins: a critical review. Cell Signal 2011 ; 23 : 609–620. [CrossRef] [PubMed] [Google Scholar]
  69. Francis-West PH, Abdelfattah A, Chen P, et al. Mechanisms of GDF-5 action during skeletal development. Development 1999 ; 126 : 1305–1315. [CrossRef] [PubMed] [Google Scholar]
  70. Winbanks CE, Chen JL, Qian H, et al. The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. J. Cell Biol 2013 ; 203 : 345–357. [CrossRef] [PubMed] [Google Scholar]
  71. Sartori R, Schirwis E, Blaauw B, et al. BMP signaling controls muscle mass. Nat Genet 2013 ; 45 : 1309–1318. [CrossRef] [PubMed] [Google Scholar]
  72. Traoré M, Gentil C, Benedetto C, et al. An embryonic CaVβ1 isoform promotes muscle mass maintenance via GDF5 signaling in adult mouse. Sci Transl Med 2019; 11 : eaaw1131. [CrossRef] [PubMed] [Google Scholar]
  73. Taylor J, Pereyra A, Zhang T, et al. The Cavβ1a subunit regulates gene expression and suppresses myogenin in muscle progenitor cells. J Cell Biol 2014 ; 205 : 829–846. [CrossRef] [PubMed] [Google Scholar]
  74. Macpherson PCD, Farshi P, Goldman D. Dach2-Hdac9 signaling regulates reinnervation of muscle endplates. Development 2015 ; 142 : 4038–4048. [PubMed] [Google Scholar]
  75. Jones G, Trajanoska K, Santanasto AJ, et al. Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women. Nat Commun 2021; 12 : 654. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.