Open Access
Numéro
Med Sci (Paris)
Volume 38, Numéro 5, Mai 2022
Page(s) 438 - 444
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2022055
Publié en ligne 24 mai 2022
  1. Millard M, Odde S, Neamati N, Integrin Targeted Therapeutics. Theranostics 2012 ; 1 : 154–188. [Google Scholar]
  2. Nguyen TP, Qu Z, Weiss JN, Cardiac fibrosis and arrhythmogenesis: The road to repair is paved with perils. J Mol Cell Cardiol 2014 ; 70 : 83–91. [CrossRef] [PubMed] [Google Scholar]
  3. de Boer RA, de Keulenaer G, Bauersachs J, et al. Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. Eur J Heart Fail 2019 ; 21 : 272–285. [CrossRef] [PubMed] [Google Scholar]
  4. González A, Ravassa S, López B, et al. Myocardial remodeling in hypertension toward a new view of hypertensive heart disease. Hypertension 2018 ; 72 : 549–558. [CrossRef] [PubMed] [Google Scholar]
  5. Cleutjens JPM, Verluyten MJA, Smits JFM, et al. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol 1995 ; 147 : 325–338. [PubMed] [Google Scholar]
  6. Möllmann H, Nef HM, Kostin S, et al. Bone marrow-derived cells contribute to infarct remodelling. Cardiovasc Res 2006 ; 71 : 661–671. [CrossRef] [PubMed] [Google Scholar]
  7. Kramann R, Schneider RK, Dirocco DP, et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 2015 ; 16 : 51–66. [CrossRef] [PubMed] [Google Scholar]
  8. Von Gise A, Pu WT., Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res 2012 ; 110 : 1628–1645. [CrossRef] [PubMed] [Google Scholar]
  9. Travers JG, Kamal FA, Robbins J, et al. Cardiac fibrosis: The fibroblast awakens. Circ Res 2016 ; 118 : 1021–1040. [CrossRef] [PubMed] [Google Scholar]
  10. Yaniz-Galende E, Roux M, Nadaud S, et al. Fibrogenic Potential of PW1/Peg3 Expressing Cardiac Stem Cells. J Am Coll Cardiol 2017 ; 70 : 728–741. [CrossRef] [PubMed] [Google Scholar]
  11. Wynn TA, Ramalingam TR, Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat Med 2012 ; 18 : 1028–1040. [CrossRef] [PubMed] [Google Scholar]
  12. Ma ZG, Yuan YP, Wu HM, et al. Cardiac fibrosis: New insights into the pathogenesis. Int J Biol Sci 2018 ; 14 : 1645–1657. [CrossRef] [PubMed] [Google Scholar]
  13. Kai H, Kuwahara F, Tokuda K, et al. Diastolic dysfunction in hypertensive hearts: Roles of perivascular inflammation and reactive myocardial fibrosis. Hypertens Res 2005 ; 28 : 483–490. [CrossRef] [PubMed] [Google Scholar]
  14. Westermann D, Lindner D, Kasner M, et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Hear Fail 2011 ; 4 : 44–52. [CrossRef] [PubMed] [Google Scholar]
  15. Idris-Khodja N, Mian MOR, Paradis P, et al. Dual opposing roles of adaptive immunity in hypertension. Eur Heart J 2014 ; 35 : 1238–1244. [CrossRef] [PubMed] [Google Scholar]
  16. Patel B, Bansal SS, Ismahil MA, et al. CCR2+ Monocyte-Derived Infiltrating Macrophages Are Required for Adverse Cardiac Remodeling During Pressure Overload. JACC Basic to Transl Sci 2018 ; 3 : 230–244. [CrossRef] [Google Scholar]
  17. Bansal R, Nakagawa S, Yazdani S, et al. Integrin alpha 11 in the regulation of the myofibroblast phenotype: Implications for fibrotic diseases. Exp Mol Med 2017 ; 49. [Google Scholar]
  18. Henderson NC, Sheppard D, Integrin-mediated regulation of TGFβ in fibrosis. Biochim Biophys Acta - Mo Basis Dis 2013 ; 1832 : 891–896. [CrossRef] [Google Scholar]
  19. Bujak M, Ren G, Kweon HJ, et al. Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation 2007 ; 116 : 2127–2138. [CrossRef] [PubMed] [Google Scholar]
  20. Popov Y, Patsenker E, Stickel F, et al. Integrin αvβ6 is a marker of the progression of biliary and portal liver fibrosis and a novel target for antifibrotic therapies. J Hepatol 2008 ; 48 : 453–464. [CrossRef] [PubMed] [Google Scholar]
  21. Hahm K, Lukashev ME, Luo Y, et al. Avβ6 Integrin Regulates Renal Fibrosis and Inflammation in Alport Mouse. Am J Pathol 2007 ; 170 : 110–125. [CrossRef] [PubMed] [Google Scholar]
  22. John AE, Graves RH, Pun KT, et al. Translational pharmacology of an inhaled small molecule αvβ6 integrin inhibitor for idiopathic pulmonary fibrosis. Nat Commun 2020; 11 : 1–14. [CrossRef] [PubMed] [Google Scholar]
  23. Horan GS, Wood S, Ona V, et al. Partial inhibition of integrin αvβ6 prevents pulmonary fibrosis without exacerbating inflammation. Am J Respir Crit Care Med 2008 ; 177 : 56–65. [CrossRef] [PubMed] [Google Scholar]
  24. Munger JS, Huang X, Kawakatsu H, et al. The integrin αvβ6 binds and activates latent TGFβ1: A mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999 ; 96 : 319–328. [CrossRef] [PubMed] [Google Scholar]
  25. Reed NI, Jo H, Chen C, et al. The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Sci Transl Med 2015; 7. [Google Scholar]
  26. Bouvet M, Claude O, Roux M, et al. Anti-integrin αv therapy improves cardiac fibrosis after myocardial infarction by blunting cardiac PW1+ stromal cells. Sci Rep 2020; 10 : 1–15. [CrossRef] [PubMed] [Google Scholar]
  27. Mu D, Cambier S, Fjellbirkeland L, et al. The integrin ανβ8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-β1. J Cell Biol 2002 ; 157 : 493–507. [CrossRef] [PubMed] [Google Scholar]
  28. Klingberg F, Chow ML, Koehler A, et al. Prestress in the extracellular matrix sensitizes latent TGF-β1 for activation. J Cell Biol 2014 ; 207 : 283–297. [CrossRef] [PubMed] [Google Scholar]
  29. Hinz B., The extracellular matrix and transforming growth factor-β1: Tale of a strained relationship. Matrix Biol 2015 ; 47 : 54–65. [CrossRef] [PubMed] [Google Scholar]
  30. Wipff PJ, Hinz B, Integrins and the activation of latent transforming growth factor β1 - An intimate relationship. Eur J Cell Biol 2008 ; 87 : 601–615. [CrossRef] [PubMed] [Google Scholar]
  31. Hinz B., It has to be the αv: Myofibroblast integrins activate latent TGF-β1. Nat Med 2013 ; 19 : 1567–1568. [CrossRef] [PubMed] [Google Scholar]
  32. Ulmasov B, Neuschwander-Tetri BA, Lai J, et al. Inhibitors of Arg-Gly-Asp-Binding Integrins Reduce Development of Pancreatic Fibrosis in Mice. Cmgh 2016 ; 2 : 499–518. [Google Scholar]
  33. Ulmasov B, Noritake H, Carmichael P, et al. An Inhibitor of Arginine-Glycine-Aspartate-Binding Integrins Reverses Fibrosis in a Mouse Model of Nonalcoholic Steatohepatitis. Hepatol Commun 2019 ; 3 : 246–261. [CrossRef] [PubMed] [Google Scholar]
  34. Henderson NC, Arnold TD, Katamura Y, et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 2013 ; 19 : 1617–1624. [CrossRef] [PubMed] [Google Scholar]
  35. Murray IR, Gonzalez ZN, Baily J, et al. Av Integrins on Mesenchymal Cells Regulate Skeletal and Cardiac Muscle Fibrosis. Nat Commun 2017; 8. [PubMed] [Google Scholar]
  36. Bagnato GL, Irrera N, Pizzino G, et al. Dual αvβ3 and avβ5 blockade attenuates fibrotic and vascular alterations in a murine model of systemic sclerosis. Clin Sci 2018 ; 132 : 231–242. [CrossRef] [PubMed] [Google Scholar]
  37. Perrucci GL, Barbagallo VA, Corlianò M, et al. Integrin ανβ5 in vitro inhibition limits pro-fibrotic response in cardiac fibroblasts of spontaneously hypertensive rats. J Transl Med 2018 ; 16 : 1–13. [CrossRef] [PubMed] [Google Scholar]
  38. Ikeuchi M, Tsutsui H, Shiomi T, et al. Inhibition of TGF-β signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc Res 2004 ; 64 : 526–535. [CrossRef] [PubMed] [Google Scholar]
  39. Schnittert J, Bansal R, Storm G, et al. Integrins in wound healing, fibrosis and tumor stroma: High potential targets for therapeutics and drug delivery. Adv Drug Deliv Rev 2018 ; 129 : 37–53. [CrossRef] [PubMed] [Google Scholar]
  40. Eijgenraam TR, Silljé HHW, de Boer RA. Current understanding of fibrosis in genetic cardiomyopathies. Trends Cardiovasc Med 2020; 30 : 353–61. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.