Open Access
Numéro |
Med Sci (Paris)
Volume 38, Numéro 5, Mai 2022
|
|
---|---|---|
Page(s) | 445 - 452 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2022062 | |
Publié en ligne | 24 mai 2022 |
- Legrand P, Catheline D, Rioux V. Les lipides ne doivent plus être diabolisés… ni chez l’adulte, ni chez l’enfant. Med Sci (Paris) 2021; 37 : 41–6. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Cockcroft S. Mammalian lipids : structure, synthesis and function. Essays Biochem 2021; 65 : 813–845. [CrossRef] [PubMed] [Google Scholar]
- de Carvalho CCCR, Caramujo MJ. The various roles of fatty acids. Molecules 2018 ; 23 : 2583. [CrossRef] [Google Scholar]
- Di Vizio D, Adam RM, Kim J, et al. Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase. Cell Cycle Georget Tex 2008 ; 7 : 2257–2267. [CrossRef] [PubMed] [Google Scholar]
- Suburu J, Shi L, Wu J, et al. Fatty acid synthase is required for mammary gland development and milk production during lactation. Am J Physiol Endocrinol Metab 2014 ; 306 : 1132–1143. [Google Scholar]
- Chirala SS, Wakil SJ. Structure and function of animal fatty acid synthase. Lipids 2004 ; 39 : 1045–1053. [CrossRef] [PubMed] [Google Scholar]
- Wang D, Sul HS. Upstream stimulatory factor binding to the E-box at -65 is required for insulin regulation of the fatty acid synthase promoter. J Biol Chem 1997 ; 272 : 26367–26374. [CrossRef] [PubMed] [Google Scholar]
- Ferré P, Phan F, Foufelle F. SREBP-1c and lipogenesis in the liver : an update. Biochem J 2021; 478 : 3723–39. [CrossRef] [PubMed] [Google Scholar]
- Guillou H, Martin PGP, Pineau T. Transcriptional regulation of hepatic fatty acid metabolism. Subcell Biochem 2008 ; 49 : 3–47. [CrossRef] [PubMed] [Google Scholar]
- Li J, Luo J, Zhu J, et al. Regulation of the fatty acid synthase promoter by liver X receptor α through direct and indirect mechanisms in goat mammary epithelial cells. Comp Biochem Physiol B Biochem Mol Biol 2015 ; 184 : 44–51. [CrossRef] [PubMed] [Google Scholar]
- He Q, Luo J, Wu J, et al. FoxO1 Knockdown Promotes Fatty Acid Synthesis via Modulating SREBP1 Activities in the Dairy Goat Mammary Epithelial Cells. J Agric Food Chem 2020; 68 : 12067–78. [CrossRef] [PubMed] [Google Scholar]
- Baldini SF, Wavelet C, Hainault I, et al. The Nutrient-Dependent O-GlcNAc Modification Controls the Expression of Liver Fatty Acid Synthase. J Mol Biol 2016 ; 428 : 3295–3304. [CrossRef] [PubMed] [Google Scholar]
- Floris A, Mazarei M, Yang X, et al. SUMOylation Protects FASN Against Proteasomal Degradation in Breast Cancer Cells Treated with Grape Leaf Extract. Biomolecules 2020; 10 : 529. [CrossRef] [Google Scholar]
- Choi MS, Jung J-Y, Kim H-J, et al. S-nitrosylation of fatty acid synthase regulates its activity through dimerization. J Lipid Res 2016 ; 57 : 607–615. [CrossRef] [PubMed] [Google Scholar]
- Lin H-P, Cheng Z-L, He R-Y, et al. Destabilization of Fatty Acid Synthase by Acetylation Inhibits De Novo Lipogenesis and Tumor Cell Growth. Cancer Res 2016 ; 76 : 6924–6936. [CrossRef] [PubMed] [Google Scholar]
- Chirala SS, Chang H, Matzuk M, et al. Fatty acid synthesis is essential in embryonic development : Fatty acid synthase null mutants and most of the heterozygotes die in utero. Proc Natl Acad Sci U S A 2003 ; 100 : 6358–6363. [CrossRef] [PubMed] [Google Scholar]
- Bowers M, Liang T, Gonzalez-Bohorquez D, et al. FASN-Dependent Lipid Metabolism Links Neurogenic Stem/Progenitor Cell Activity to Learning and Memory Deficits. Cell Stem Cell 2020; 27 : 98–109.e11. [CrossRef] [PubMed] [Google Scholar]
- Razani B, Zhang H, Schulze PC, et al. Fatty acid synthase modulates homeostatic responses to myocardial stress. J Biol Chem 2011 ; 286 : 30949–30961. [CrossRef] [PubMed] [Google Scholar]
- Wagle S, Bui A, Ballard PL, et al. Hormonal regulation and cellular localization of fatty acid synthase in human fetal lung. Am J Physiol-Lung Cell Mol Physiol 1999 ; 277 : L381–L390. [CrossRef] [Google Scholar]
- Fiorentino M, Zadra G, Palescandolo E, et al. Overexpression of fatty acid synthase is associated with palmitoylation of Wnt1 and cytoplasmic stabilization of beta-catenin in prostate cancer. Lab Investig J Tech Methods Pathol 2008 ; 88 : 1340–1348. [CrossRef] [PubMed] [Google Scholar]
- Wei X, Yang Z, Rey FE, et al. Fatty Acid Synthase Modulates Intestinal Barrier Function through Palmitoylation of Mucin 2. Cell Host Microbe 2012 ; 11 : 140–152. [CrossRef] [PubMed] [Google Scholar]
- Faes S, Dormond O. PI3K and AKT : Unfaithful Partners in Cancer. Int J Mol Sci 2015 ; 16 : 21138–21152. [CrossRef] [PubMed] [Google Scholar]
- Liu Y, An S, Ward R, et al. G protein-coupled receptors as promising cancer targets. Cancer Lett 2016 ; 376 : 226–239. [CrossRef] [PubMed] [Google Scholar]
- Veigel D, Wagner R, Stübiger G, et al. Fatty acid synthase is a metabolic marker of cell proliferation rather than malignancy in ovarian cancer and its precursor cells. Int J Cancer 2015 ; 136 : 2078–2090. [CrossRef] [PubMed] [Google Scholar]
- Denechaud PD, Lopez-Mejia IC, Fajas L. Contrôle de l’homéostasie glucido-lipidique par les facteurs du cycle cellulaire CDK4 et E2F1. Med Sci (Paris) 2016 ; 32 : 815–818. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Sourdioux M, Brevelet C, Delabrosse Y, et al. Association of fatty acid synthase gene and malic enzyme gene polymorphisms with fatness in turkeys. Poult Sci 1999 ; 78 : 1651–1657. [CrossRef] [PubMed] [Google Scholar]
- Kovacs P, Harper I, Hanson RL, et al. A Novel Missense Substitution (Val1483Ile) in the Fatty Acid Synthase Gene (FAS) Is Associated With Percentage of Body Fat and Substrate Oxidation Rates in Nondiabetic Pima Indians. Diabetes 2004 ; 53 : 1915–1919. [CrossRef] [PubMed] [Google Scholar]
- Körner A, Ma L, Franks PW, et al. Sex-specific effect of the Val1483Ile polymorphism in the fatty acid synthase gene (FAS) on body mass index and lipid profile in Caucasian children. Int J Obes 2007 ; 31 : 353–358. [CrossRef] [PubMed] [Google Scholar]
- Kumar MV, Shimokawa T, Nagy TR, et al. Differential effects of a centrally acting fatty acid synthase inhibitor in lean and obese mice. Proc Natl Acad Sci U S A 2002 ; 99 : 1921–1925. [CrossRef] [PubMed] [Google Scholar]
- Berndt J, Kovacs P, Ruschke K, et al. Fatty acid synthase gene expression in human adipose tissue : association with obesity and type 2 diabetes. Diabetologia 2007 ; 50 : 1472–1480. [CrossRef] [PubMed] [Google Scholar]
- Migita T, Ruiz S, Fornari A, et al. Fatty Acid Synthase : A Metabolic Enzyme and Candidate Oncogene in Prostate Cancer. J Natl Cancer Inst 2009 ; 101 : 519–532. [CrossRef] [PubMed] [Google Scholar]
- Bandyopadhyay S, Pai SK, Watabe M, et al. FAS expression inversely correlates with PTEN level in prostate cancer and a PI 3-kinase inhibitor synergizes with FAS siRNA to induce apoptosis. Oncogene 2005 ; 24 : 5389–5395. [CrossRef] [PubMed] [Google Scholar]
- Jiang Y, Yin X, Wu L, et al. MAPK/P53-mediated FASN expression in bone tumors. Oncol Lett 2017 ; 13 : 4035–4038. [CrossRef] [PubMed] [Google Scholar]
- Graner E, Tang D, Rossi S, et al. The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell 2004 ; 5 : 253–261. [CrossRef] [PubMed] [Google Scholar]
- Jin Q, Yuan LX, Boulbes D, et al. Fatty acid synthase phosphorylation : a novel therapeutic target in HER2-overexpressing breast cancer cells. Breast Cancer Res BCR 2010 ; 12 : R96. [CrossRef] [Google Scholar]
- Furuta E, Pai SK, Zhan R, et al. Fatty Acid Synthase Gene Is Up-regulated by Hypoxia via Activation of Akt and Sterol Regulatory Element Binding Protein-1. Cancer Res 2008 ; 68 : 1003–1011. [CrossRef] [PubMed] [Google Scholar]
- Li T, Weng J, Zhang Y, et al. mTOR direct crosstalk with STAT5 promotes de novo lipid synthesis and induces hepatocellular carcinoma. Cell Death Dis 2019 ; 10 : 619. [CrossRef] [PubMed] [Google Scholar]
- Shah US, Dhir R, Gollin SM, et al. Fatty acid synthase gene overexpression and copy number gain in prostate adenocarcinoma. Hum Pathol 2006 ; 37 : 401–409. [CrossRef] [PubMed] [Google Scholar]
- Nguyen PL, Ma J, Chavarro JE, et al. Fatty Acid Synthase Polymorphisms, Tumor Expression, Body Mass Index, Prostate Cancer Risk, and Survival. J Clin Oncol 2010 ; 28 : 3958–3964. [CrossRef] [PubMed] [Google Scholar]
- Ogino S, Kawasaki T, Ogawa A, et al. Fatty acid synthase overexpression in colorectal cancer is associated with microsatellite instability, independent of CpG island methylator phenotype. Hum Pathol 2007 ; 38 : 842–849. [CrossRef] [PubMed] [Google Scholar]
- Dean EJ, Falchook GS, Patel MR, et al. Preliminary activity in the first in human study of the first-in-class fatty acid synthase (FASN) inhibitor, TVB-2640. J Clin Oncol 2016 ; 34 : 2512–2512. [CrossRef] [Google Scholar]
- Arkenau H-T, Voskoboynik M, Infante J, et al. Evidence of activity of a new mechanism of action (MoA): A first-in-human study of the first-in-class fatty acid synthase (FASN) inhibitor, TVB-2640, as monotherapy or in combination. EJC 2015; Abstract 27LBA. https://doi.org/10.1016/S0959-8049(15), 30076–9. [Google Scholar]
- Wang YY, Kuhajda FP, Li J, et al. Fatty acid synthase as a tumor marker : its extracellular expression in human breast cancer. J Exp Ther Oncol 2004 ; 4 : 101–110. [PubMed] [Google Scholar]
- Collura A, Lefevre JH, Magali Svrcek M, et al. Instabilité des microsatellites et cancer. De l’instabilité du génome à la médecine personnalisée. Med Sci (Paris) 2019 ; 35 : 535–543. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.