Open Access
Numéro |
Med Sci (Paris)
Volume 35, Numéro 8-9, Août–Septembre 2019
|
|
---|---|---|
Page(s) | 659 - 666 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2019128 | |
Publié en ligne | 18 septembre 2019 |
- Puelles VG, Hoy WE, Hughson MD, et al. Glomerular number and size variability and risk for kidney disease. Curr Opin Nephrol Hypertens 2011 ; 20 : 7–15. [CrossRef] [PubMed] [Google Scholar]
- Cil O, Perwad F. Monogenic causes of proteinuria in children. Front Med 2018 ; 5 : 55. [Google Scholar]
- O’Sullivan ED, Hughes J, Ferenbach DA. Renal aging: causes and consequences. J Am Soc Nephrol 2017 ; 28 : 407–420. [Google Scholar]
- D’Agati VD, Kaskel FJ, Falk RJ. Focal segmental glomerulosclerosis. N Engl J Med 2011 ; 365 : 2398–2411. [Google Scholar]
- Audard V, Lang P, Sahali D. Pathogénie du syndrome néphrotique à lesions glomérulaires minimes. Med Sci (Paris) 2008 ; 24 : 853–858. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Zhang SY, Audard V, Lang P, Sahali D. Mécanismes moléculaires du syndrome néphrotique idiopathique à rechutes: rôle de c-mip dans les dysfonctions podocytaires. Med Sci (Paris) 2010 ; 26 : 592–596. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Banh TH, Hussain-Shamsy N, Patel V, et al. Ethnic differences in incidence and outcomes of childhood nephrotic syndrome. Clin J Am Soc Nephrol 2016 ; 11 : 1760–1768. [CrossRef] [PubMed] [Google Scholar]
- Meyrier A, Niaudet P. Acute kidney injury complicating nephrotic syndrome of minimal change disease. Kidney Int 2018 ; 94 : 861–869. [CrossRef] [PubMed] [Google Scholar]
- Uezono S, Hara S, Sato Y, et al. Renal biopsy in elderly patients: a clinicopathological analysis. Renal Failure 2006 ; 28 : 549–555. [CrossRef] [PubMed] [Google Scholar]
- Mendonca AC, Oliveira EA, Froes BP, et al. A predictive model of progressive chronic kidney disease in idiopathic nephrotic syndrome. Pediatr Nephrol 2015 ; 30 : 2011–2020. [CrossRef] [PubMed] [Google Scholar]
- Han MH, Kim YJ. Practical application of Columbia classification for focal segmental glomerulosclerosis. BioMed Res Int 2016 ; 2016 : 9375753. [Google Scholar]
- Wharram BL, Goyal M, Wiggins JE, et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol 2005 ; 16 : 2941–2952. [Google Scholar]
- Smeets B, Kuppe C, Sicking EM, et al. Parietal epithelial cells participate in the formation of sclerotic lesions in focal segmental glomerulosclerosis. J Am Soc Nephrol 2011 ; 22 : 1262–1274. [Google Scholar]
- O’Shaughnessy MM, Hogan SL, Poulton CJ, et al. Temporal and demographic trends in glomerular disease epidemiology in the southeastern United States, 1986–2015. Clin J Am Soc Nephrol 2017 ; 12 : 614–623. [CrossRef] [PubMed] [Google Scholar]
- Savin VJ, Sharma M, Zhou J, et al. Multiple targets for novel therapy of FSGS associated with circulating permeability factor. BioMed Res Int 2017 ; 2017 : 6232616. [Google Scholar]
- Ehrich JH, Geerlings C, Zivicnjak M, et al. Steroid-resistant idiopathic childhood nephrosis: overdiagnosed and undertreated. Nephrol Dial Transplant 2007 ; 22 : 2183–2193. [CrossRef] [PubMed] [Google Scholar]
- Sharma M, Zhou J, Gauchat JF, et al. Janus kinase 2/signal transducer and activator of transcription 3 inhibitors attenuate the effect of cardiotrophin-like cytokine factor 1 and human focal segmental glomerulosclerosis serum on glomerular filtration barrier. Transl Res 2015 ; 166 : 384–398. [Google Scholar]
- Fogo AB. Causes and pathogenesis of focal segmental glomerulosclerosis. Nat Rev Nephrol 2015 ; 11 : 76–87. [CrossRef] [PubMed] [Google Scholar]
- Tejani A, Phadke K, Nicastri A, et al. Efficacy of cyclophosphamide in steroid-sensitive childhood nephrotic syndrome with different morphological lesions. Nephron 1985 ; 41 : 170–173. [CrossRef] [PubMed] [Google Scholar]
- Maas RJ, Deegens JK, Smeets B, et al. Minimal change disease and idiopathic FSGS: manifestations of the same disease. Nat Rev Nephrol 2016 ; 12 : 768–776. [CrossRef] [PubMed] [Google Scholar]
- Gentili A, Tangheroni W, Gelli G. Proteinuria caused by transfusion of blood from nephrotic to non-nephrotic individuals. Minerva Medica 1954 ; 45 : 603–608. [PubMed] [Google Scholar]
- Hoyer JR, Vernier RL, Najarian JS, et al. Recurrence of idiopathic nephrotic syndrome after renal transplantation. Lancet 1972 ; 2 : 343–348. [CrossRef] [PubMed] [Google Scholar]
- Rich AR. A hitherto undescribed vulnerability of the juxtamedullary glomeruli in lipoid nephrosis. Bull Johns Hopkins Hosp 1957 ; 100 : 173–186. [PubMed] [Google Scholar]
- Hoyer JR, Vernier RL, Najarian JS, et al. Recurrence of idiopathic nephrotic syndrome after renal transplantation. 1972. J Am Soc Nephrol 2001 ; 12 : 1994–2002. [Google Scholar]
- Dantal J, Testa A, Bigot E, Soulillou JP. Effects of plasma-protein A immunoadsorption on idiopathic nephrotic syndrome recurring after renal transplantation. Ann Med Interne (Paris) 1992 ; 143 : suppl 1 48–51. [PubMed] [Google Scholar]
- Artero ML, Sharma R, Savin VJ, Vincenti F. Plasmapheresis reduces proteinuria and serum capacity to injure glomeruli in patients with recurrent focal glomerulosclerosis. Am J Kidney Dis 1994 ; 23 : 574–581. [CrossRef] [PubMed] [Google Scholar]
- Dantal J, Godfrin Y, Koll R, et al. Antihuman immunoglobulin affinity immunoadsorption strongly decreases proteinuria in patients with relapsing nephrotic syndrome. J Am Soc Nephrol 1998 ; 9 : 1709–1715. [Google Scholar]
- Zimmerman SW. Increased urinary protein excretion in the rat produced by serum from a patient with recurrent focal glomerular sclerosis after renal transplantation. Clin Nephrol 1984 ; 22 : 32–38. [PubMed] [Google Scholar]
- Savin VJ, Sharma R, Sharma M, et al. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N Engl J Med 1996 ; 334 : 878–883. [Google Scholar]
- Lagrue G, Branellec A, Niaudet P, et al. Transmission of nephrotic syndrome to two neonates. Spontaneous regression. Presse Med 1991 ; 20 : 255–257. [Google Scholar]
- Gallon L, Leventhal J, Skaro A, et al. Resolution of recurrent focal segmental glomerulosclerosis after retransplantation. N Engl J Med 2012 ; 366 : 1648–1649. [Google Scholar]
- Shalhoub RJ. Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet 1974 ; 2 : 556–560. [CrossRef] [PubMed] [Google Scholar]
- Janeway CA. The management of nephrosis. Pediatrics 1948 ; 2 : 705. [PubMed] [Google Scholar]
- Lagrue G, Xheneumont S, Branellec A, et al. A vascular permeability factor elaborated from lymphocytes. I. Demonstration in patients with nephrotic syndrome. Biomedicine 1975 ; 23 : 37–40. [PubMed] [Google Scholar]
- Benz K, Dotsch J, Rascher W, Stachel D. Change of the course of steroid-dependent nephrotic syndrome after rituximab therapy. Pediatr Nephrol 2004 ; 19 : 794–797. [CrossRef] [PubMed] [Google Scholar]
- Yoo TH, Pedigo CE, Guzman J, et al. Sphingomyelinase-like phosphodiesterase 3b expression levels determine podocyte injury phenotypes in glomerular disease. J Am Soc Nephrol 2015 ; 26 : 133–147. [Google Scholar]
- Ollero M, Sahali D. Inhibition of the VEGF signalling pathway and glomerular disorders. Nephrol Dial Transplant 2015 ; 30 : 1449–1455. [CrossRef] [PubMed] [Google Scholar]
- Delville M, Sigdel TK, Wei C, et al. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci Transl Med 2014; 6 : 256ra136. [CrossRef] [PubMed] [Google Scholar]
- Garin EH, Mu W, Arthur JM, et al. Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int 2010 ; 78 : 296–302. [CrossRef] [PubMed] [Google Scholar]
- Yu CC, Fornoni A, Weins A, et al. Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med 2013 ; 369 : 2416–2423. [Google Scholar]
- Lai KW, Wei CL, Tan LK, et al. Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J Am Soc Nephrol 2007 ; 18 : 1476–1485. [Google Scholar]
- McCarthy ET, Sharma M, Savin VJ. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 2010 ; 5 : 2115–2121. [CrossRef] [PubMed] [Google Scholar]
- Raveh D, Shemesh O, Ashkenazi YJ, et al. Tumor necrosis factor-alpha blocking agent as a treatment for nephrotic syndrome. Pediatr Nephrol 2004 ; 19 : 1281–1284. [CrossRef] [PubMed] [Google Scholar]
- Bakker WW, Baller JF, van Luijk WH. A kallikrein-like molecule and plasma vasoactivity in minimal change disease. Increased turnover in relapse versus remission. Contrib Nephrol 1988; 67 : 31–6. [CrossRef] [PubMed] [Google Scholar]
- Wei C, Moller CC, Altintas MM, et al. Modification of kidney barrier function by the urokinase receptor. Nat Med 2008 ; 14 : 55–63. [CrossRef] [PubMed] [Google Scholar]
- Kemeny E, Mihatsch MJ, Durmuller U, Gudat F. Podocytes loose their adhesive phenotype in focal segmental glomerulosclerosis. Clin Nephrol 1995 ; 43 : 71–83. [PubMed] [Google Scholar]
- Clement LC, Avila-Casado C, Mace C, et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 2011 ; 17 : 117–122. [CrossRef] [PubMed] [Google Scholar]
- Sever S, Trachtman H, Wei C, Reiser J. Is there clinical value in measuring suPAR levels in FSGS?. Clin J Am Soc Nephrol 2013 ; 8 : 1273–1275. [CrossRef] [PubMed] [Google Scholar]
- Schwartz MM, Evans J, Bain R, Korbet SM. Focal segmental glomerulosclerosis: prognostic implications of the cellular lesion. J Am Soc Nephrol 1999 ; 10 : 1900–1907. [Google Scholar]
- Campbell KN, Tumlin JA. Protecting podocytes: a key target for therapy of focal segmental glomerulosclerosis. Am J Nephrol 2018 ; 47 : suppl 1 14–29. [CrossRef] [PubMed] [Google Scholar]
- Sharma R, Sharma M, McCarthy ET, et al. Components of normal serum block the focal segmental glomerulosclerosis factor activity in vitro. Kidney Int 2000 ; 58 : 1973–1979. [CrossRef] [PubMed] [Google Scholar]
- Harita Y, Ishizuka K, Tanego A, et al. Decreased glomerular filtration as the primary factor of elevated circulating suPAR levels in focal segmental glomerulosclerosis. Pediatr Nephrol 2014 ; 29 : 1553–1560. [CrossRef] [PubMed] [Google Scholar]
- Faul C, Donnelly M, Merscher-Gomez S, et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 2008 ; 14 : 931–938. [CrossRef] [PubMed] [Google Scholar]
- Beaudreuil S, Zhang X, Florence H, et al. Circulating CASK is associated with recurrent focal segmental glomerulosclerosis after transplantation. PLoS One 2019 (sous presse). [Google Scholar]
- Müller-Deile J, Schenk H, Schroder P, et al. Circulating factors cause proteinuria in parabiotic zebrafish. Kidney Int 2019 Mar 8. pii: S0085–2538(19)30232–7. doi: 10.1016/j.kint.2019.02.013. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.