Open Access
Numéro |
Med Sci (Paris)
Volume 35, Numéro 8-9, Août–Septembre 2019
|
|
---|---|---|
Page(s) | 667 - 673 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2019130 | |
Publié en ligne | 18 septembre 2019 |
- Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 2015 ; 16 : 421–433. [CrossRef] [PubMed] [Google Scholar]
- Lodge R, Ferreira Barbosa JA, Lombard-Vadnais F, et al. Host microRNAs-221 and -222 inhibit hiv-1 entry in macrophages by targeting the CD4 viral receptor. Cell Rep 2017 ; 21 : 141–153. [CrossRef] [PubMed] [Google Scholar]
- Ingle H, Kumar S, Raut AA, et al. The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication. Sci Signal 2015; 8 : ra126. [Google Scholar]
- Santhakumar D, Forster T, Laqtom NN, et al. Combined agonist-antagonist genome-wide functional screening identifies broadly active antiviral microRNAs. Proc Natl Acad Sci USA 2010 ; 107 : 13830–13835. [CrossRef] [Google Scholar]
- Lewis BP, Shih I, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell 2003 ; 115 : 787–798. [CrossRef] [PubMed] [Google Scholar]
- Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005 ; 120 : 15–20. [CrossRef] [PubMed] [Google Scholar]
- John B, Enright AJ, Aravin A, et al. Human microRNA targets. PLoS Biol 2004 ; 2 : e363. [CrossRef] [PubMed] [Google Scholar]
- Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet 2005 ; 37 : 495–500. [Google Scholar]
- Kiriakidou M, Nelson PT, Kouranov A, et al. A combined computational-experimental approach predicts human microRNA targets. Genes Dev 2004 ; 18 : 18: 1165–1178. [CrossRef] [PubMed] [Google Scholar]
- Hsu PW-C, Lin L-Z, Hsu S-D, et al. ViTa: prediction of host microRNAs targets on viruses. Nucleic Acids Res 2007; 35 : D381–5. [CrossRef] [PubMed] [Google Scholar]
- Pinzón N, Li B, Martinez L, et al. microRNA target prediction programs predict many false positives. Genome Res 2017 ; 27 : 234–245. [CrossRef] [PubMed] [Google Scholar]
- Dölken L, Malterer G, Erhard F, et al. Systematic analysis of viral and cellular microRNA targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay. Cell Host Microbe 2010 ; 7 : 324–334. [CrossRef] [PubMed] [Google Scholar]
- Chi SW, Zang JB, Mele A, et al. Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 2009 ; 460 : 479–486. [CrossRef] [PubMed] [Google Scholar]
- Hafner M, Landthaler M, Burger L, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 2010 ; 141 : 129–141. [CrossRef] [PubMed] [Google Scholar]
- Jopling CL, Yi M, Lancaster AM, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005 ; 309 : 1577–1581. [Google Scholar]
- Henke JI, Goergen D, Zheng J, et al. microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J 2008 ; 27 : 3300–3310. [CrossRef] [PubMed] [Google Scholar]
- Mengardi C, Ohlmann T. miR-122 continue de nous surprendre. Med Sci (Paris) 2015 ; 31 : 612–615. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Li Y, Yamane D, Lemon SM. Dissecting the roles of the 5’exoribonucleases Xrn1 and Xrn2 in restricting hepatitis C virus replication. J Virol 2015 ; 89 : 4857–4865. [CrossRef] [PubMed] [Google Scholar]
- Gao L, Guo XK, Wang L, et al. MicroRNA 181 suppresses porcine reproductive and respiratory syndrome virus (PRRSV) infection by targeting PRRSV receptor CD163. J Virol 2013 ; 87 : 8808–8812. [CrossRef] [PubMed] [Google Scholar]
- Chen Z, Ye J, Ashraf U, et al. MicroRNA-33a-5p Modulates japanese encephalitis virus replication by targeting eukaryotic translation elongation factor 1A1. J Virol 2016 ; 90 : 3722–3734. [CrossRef] [PubMed] [Google Scholar]
- Ho BC, Yu SL, Chen JJW, et al. Enterovirus-induced miR-141 contributes to shutoff of host protein translation by targeting the translation initiation factor eIF4E. Cell Host Microbe 2011 ; 9 : 58–69. [CrossRef] [PubMed] [Google Scholar]
- Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: tiny players in a big field. Immunity 2007 ; 26 : 133–137. [CrossRef] [PubMed] [Google Scholar]
- Rosenberger CM, Podyminogin RL, Diercks AH, et al. miR-144 attenuates the host response to influenza virus by targeting the TRAF6-IRF7 signaling axis. PLoS Pathog 2017 ; 13 : e1006305. [CrossRef] [PubMed] [Google Scholar]
- Backes S, Shapiro JS, Sabin LR, et al. Degradation of host microRNAs by Poxvirus poly(A) polymerase reveals terminal RNA methylation as a protective antiviral mechanism. Cell Host Microbe 2012 ; 12 : 200–210. [CrossRef] [PubMed] [Google Scholar]
- Buck AH, Perot J, Chisholm MA, et al. Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. RNA 2010 ; 16 : 307–315. [CrossRef] [PubMed] [Google Scholar]
- Libri V, Helwak A, Miesen P, et al. Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target. Proc Natl Acad Sci USA 2012 ; 109 : 279–284. [CrossRef] [Google Scholar]
- Marcinowski L, Tanguy M, Krmpotic A, et al. Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog 2012 ; 8 : e1002510. [CrossRef] [PubMed] [Google Scholar]
- Ameres SL, Horwich MD, Hung JH, et al. Target RNA-directed trimming and tailing of small silencing RNAs. Science 2010 ; 328 : 1534–1539. [Google Scholar]
- Chakraborty C, Sharma AR, Sharma G, et al. Therapeutic miRNA and siRNA: Moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 2017 ; 8 : 132–143. [CrossRef] [PubMed] [Google Scholar]
- Peng S, Wang J, Wei S, et al. Endogenous cellular microRNAs mediate antiviral defense against influenza A virus. Mol Ther Nucleic Acids 2018 ; 10 : 361–375. [CrossRef] [PubMed] [Google Scholar]
- Janssen HLA, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013 ; 368 : 1685–1694. [Google Scholar]
- van der Ree MH, van der Meer AJ, de Bruijne J, et al. Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients. Antiviral Res 2014 ; 111 : 53–59. [CrossRef] [PubMed] [Google Scholar]
- van der Ree MH, de Vree JM, Stelma F, et al. Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: a phase 1B, double-blind, randomised controlled trial. Lancet 2017 ; 389 : 709–717. [CrossRef] [PubMed] [Google Scholar]
- Waring BM, Sjaastad LE, Fiege JK, et al. MicroRNA-based attenuation of influenza virus across susceptible hosts. J Virol 2017 ; 92 : e01741–e01717. [Google Scholar]
- Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 2015 ; 14 : 642–662. [CrossRef] [PubMed] [Google Scholar]
- Kelly EJ, Hadac EM, Greiner S, et al. Engineering microRNA responsiveness to decrease virus pathogenicity. Nat Med 2008 ; 14 : 1278–1283. [CrossRef] [PubMed] [Google Scholar]
- Bogerd HP, Skalsky RL, Kennedy EM, et al. Replication of many human viruses is refractory to inhibition by endogenous cellular microRNAs. J Virol. 2014 ; 88 : 8065–8076. [CrossRef] [PubMed] [Google Scholar]
- Scheel TKH, Luna JM, Liniger M, et al. A broad RNA virus survey reveals both miRNA dependence and functional sequestration. Cell Host Microbe 2016 ; 19 : 409–423. [CrossRef] [PubMed] [Google Scholar]
- Kincaid RP, Sullivan CS. Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog 2012 ; 8 : e1003018. [CrossRef] [PubMed] [Google Scholar]
- Sedano CD, Sarnow P. Hepatitis C virus subverts liver-specific miR-122 to protect the viral genome from exoribonuclease Xrn2. Cell Host Microbe 2014 ; 16 : 257–264. [CrossRef] [PubMed] [Google Scholar]
- Masaki T, Arend KC, Li Y, et al. miR-122 Stimulates hepatitis C virus RNA synthesis by altering the balance of viral RNAs engaged in replication versus translation. Cell Host Microbe 2015 ; 17 : 217–228. [CrossRef] [PubMed] [Google Scholar]
- Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010 ; 327 : 198–201. [Google Scholar]
- Trobaugh DW, Gardner CL, Sun C, et al. RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. Nature 2014 ; 506 : 245–248. [CrossRef] [PubMed] [Google Scholar]
- Hazra B, Kumawat KL, Basu A. The host microRNA miR-301a blocks the IRF1-mediated neuronal innate immune response to Japanese encephalitis virus infection. Sci Signal 2017; 10 : eaaf5185. [Google Scholar]
- Stewart CR, Marsh GA, Jenkins KA, et al. Promotion of Hendra virus replication by microRNA 146a. J Virol 2013 ; 87 : 3782–3791. [CrossRef] [PubMed] [Google Scholar]
- Otsuka M, Jing Q, Georgel P, et al. Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity 2007 ; 27 : 123–134. [CrossRef] [PubMed] [Google Scholar]
- Guo X-k., Zhang Q, Gao L, et al. Increasing expression of microRNA 181 inhibits porcine reproductive and respiratory syndrome virus replication and has implications for controlling virus infection. J Virol 2013 ; 87 : 1159–1171. [CrossRef] [PubMed] [Google Scholar]
- Li L, Gao F, Jiang Y, et al. Cellular miR-130b inhibits replication of porcine reproductive and respiratory syndrome virus in vitro and in vivo. Sci Rep 2015; 5. [Google Scholar]
- McCaskill JL, Ressel S, Alber A, et al. Broad-spectrum inhibition of respiratory virus infection by microRNA mimics targeting p38 MAPK signaling. Mol Ther Nucleic Acids 2017 ; 7 : 256–266. [CrossRef] [PubMed] [Google Scholar]
- Wu N, Gao N, Fan D, et al. miR-223 inhibits dengue virus replication by negatively regulating the microtubule-destabilizing protein STMN1 in EAhy926 cells. Microbes Infect 2014 ; 16 : 911–922. [Google Scholar]
- Chen Z, Ye J, Ashraf U, et al. MicroRNA-33a-5p Modulates japanese encephalitis virus replication by targeting eukaryotic translation elongation factor 1A1. J Virol 2016 ; 90 : 3722–3734. [CrossRef] [PubMed] [Google Scholar]
- Smith JL, Jeng S, McWeeney SK, et al. A microRNA screen identifies the Wnt signaling pathway as a regulator of the interferon response during flavivirus infection. J Virol 2017 ; 91 : e02388–e02316. [PubMed] [Google Scholar]
- Diosa-Toro M, Echavarría-Consuegra L, Flipse J, et al. MicroRNA profiling of human primary macrophages exposed to dengue virus identifies miRNA-3614-5p as antiviral and regulator of ADAR1 expression. PLoS Neg Trop Dis 2017 ; 11 : e0005981. [CrossRef] [Google Scholar]
- Li Q, Lowey B, Sodroski C, et al. Cellular microRNA networks regulate host dependency of hepatitis C virus infection. Nat Comm 2017; 8. [Google Scholar]
- Song L, Liu H, Gao S, et al. Cellular MicroRNAs Inhibit replication of the H1N1 influenza a virus in infected cells. J Virol 2010 ; 84 : 8849–8860. [CrossRef] [PubMed] [Google Scholar]
- Slonchak A, Shannon RP, Pali G, et al. Human microRNA miR-532-5p exhibits antiviral activity against West Nile virus via suppression of host genes SESTD1 and TAB3 required for virus replication. J Virol 2016 ; 90 : 2388–2402. [Google Scholar]
- Smith JL, Grey FE, Uhrlaub JL, et al. Induction of the cellular microRNA, Hs_154, by West Nile virus contributes to virus-mediated apoptosis through repression of antiapoptotic factors. J Virol 2012 ; 86 : 5278–5287. [CrossRef] [PubMed] [Google Scholar]
- Shim BS, Wu W, Kyriakis CS, et al. MicroRNA-555 has potent antiviral properties against poliovirus. J Gen Virol. 2016 ; 97 : 659–668. [CrossRef] [PubMed] [Google Scholar]
- Wang P, Hou J, Lin L, et al. Inducible microRNA-155 Feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol 2010 ; 185 : 6226–6233. [CrossRef] [PubMed] [Google Scholar]
- Tang WF, Huang RT, Chien KY, et al. Host microRNA miR-197 plays a negative regulatory role in the enterovirus 71 infectious cycle by targeting the RAN protein. J Virol 2016 ; 90 : 1424–1438. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.