Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 12, Décembre 2015
Page(s) 1115 - 1125
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153112015
Publié en ligne 16 décembre 2015
  1. Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 2009 ; 32 : 149–184. [CrossRef] [PubMed]
  2. Giachino C, Taylor V. Notching up neural stem cell homogeneity in homeostasis and disease. Front Neurosci 2014 ; 8 : 32. [CrossRef] [PubMed]
  3. Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 2011 ; 70 : 687–702. [CrossRef] [PubMed]
  4. Benner EJ, Luciano D, Jo R, et al. Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4. Nature 2013 ; 497 : 369–373. [CrossRef] [PubMed]
  5. Lopez-Juarez A, Howard J, Ullom K, et al. Gsx2 controls region-specific activation of neural stem cells and injury-induced neurogenesis in the adult subventricular zone. Genes Dev 2013 ; 27 : 1272–1287. [CrossRef] [PubMed]
  6. Imayoshi I, Shimojo H, Sakamoto M, et al. Genetic visualization of notch signaling in mammalian neurogenesis. Cell Mol Life Sci 2013 ; 70 : 2045–2057. [CrossRef] [PubMed]
  7. Pierfelice T, Alberi L, Gaiano N. Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 2011 ; 69 : 840–855. [CrossRef] [PubMed]
  8. Heitzler P. Biodiversity and noncanonical Notch signaling. Curr Top Dev Biol 2010 ; 92 : 457–481. [CrossRef] [PubMed]
  9. Hu QD, Ang BT, Karsak M, et al. F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation. Cell 2003 ; 115 : 163–175. [CrossRef] [PubMed]
  10. Hsieh FY, Ma TL, Shih HY, et al. Dner inhibits neural progenitor proliferation and induces neuronal and glial differentiation in zebrafish. Dev Biol 2013 ; 375 : 1–12. [CrossRef] [PubMed]
  11. Sprinzak D, Lakhanpal A, Lebon L, et al. Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 2010 ; 465 : 86–90. [CrossRef] [PubMed]
  12. Chi Z, Zhang J, Tokunaga A, et al. Botch promotes neurogenesis by antagonizing Notch. Dev Cell 2012 ; 22 : 707–720. [CrossRef] [PubMed]
  13. Shimizu T, Nakazawa M, Kani S, et al. Zinc finger genes Fezf1 and Fezf2 control neuronal differentiation by repressing Hes5 expression in the forebrain. Development 2010 ; 137 : 1875–1885. [CrossRef] [PubMed]
  14. Tiberi L, van den Ameele J, Dimidschstein J, et al. BCL6 controls neurogenesis through Sirt1-dependent epigenetic repression of selective Notch targets. Nat Neurosci 2012 ; 15 : 1627–1635. [CrossRef] [PubMed]
  15. Heitzler P, Simpson P. The choice of cell fate in the epidermis of Drosophila. Cell 1991 ; 64 : 1083–1092. [CrossRef] [PubMed]
  16. Del Bene F, Wehman AM, Link BA, Baier H. Regulation of neurogenesis by interkinetic nuclear migration through an apical-basal notch gradient. Cell 2008 ; 134 : 1055–1065. [CrossRef] [PubMed]
  17. Formosa-Jordan P, Ibanes M, Ares S, Frade JM. Lateral inhibition and neurogenesis: novel aspects in motion. Int J Dev Biol 2013 ; 57 : 341–350. [CrossRef] [PubMed]
  18. Sang L, Coller HA, Roberts JM. Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science 2008 ; 321 : 1095–1100. [CrossRef] [PubMed]
  19. Lui JH, Hansen DV, Kriegstein AR. Development and evolution of the human neocortex. Cell 2011 ; 146 : 18–36. [CrossRef] [PubMed]
  20. Mizuguchi R, Kriks S, Cordes R, et al. Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons. Nat Neurosci 2006 ; 9 : 770–778. [CrossRef] [PubMed]
  21. Namihira M, Kohyama J, Semi K, et al. Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev Cell 2009 ; 16 : 245–255. [CrossRef] [PubMed]
  22. Hoeck JD, Jandke A, Blake SM, et al. Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nat Neurosci 2010 ; 13 : 1365–1372. [CrossRef] [PubMed]
  23. Rabadan MA, Cayuso J, Le Dreau G, et al. Jagged2 controls the generation of motor neuron and oligodendrocyte progenitors in the ventral spinal cord. Cell Death Diff 2012 ; 19 : 209–219. [CrossRef]
  24. Park HC, Appel B. Delta-Notch signaling regulates oligodendrocyte specification. Development 2003 ; 130 : 3747–3755. [CrossRef] [PubMed]
  25. Ables JL, Breunig JJ, Eisch AJ, Rakic P. Not(ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci 2011 ; 12 : 269–283. [CrossRef] [PubMed]
  26. Basak O, Giachino C, Fiorini E, et al. Neurogenic subventricular zone stem/progenitor cells are Notch1-dependent in their active but not quiescent state. J Neurosci 2012 ; 32 : 5654–5666. [CrossRef] [PubMed]
  27. Carlen M, Meletis K, Goritz C, et al. Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci 2009 ; 12 : 259–267. [CrossRef] [PubMed]
  28. Alunni A, Krecsmarik M, Bosco A, et al. Notch3 signaling gates cell cycle entry and limits neural stem cell amplification in the adult pallium. Development 2013 ; 140 : 3335–3347. [CrossRef] [PubMed]
  29. Kawaguchi D, Furutachi S, Kawai H, et al. Dll1 maintains quiescence of adult neural stem cells and segregates asymmetrically during mitosis. Nat Commun 2013 ; 4 : 1880. [CrossRef] [PubMed]
  30. Aguirre A, Rubio ME, Gallo V. Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 2010 ; 467 : 323–327. [CrossRef] [PubMed]
  31. Ferent J, Cochard L, Faure H, et al. Genetic activation of Hedgehog signaling unbalances the rate of neural stem cell renewal by increasing symmetric divisions. Stem Cell Rep 2014 ; 3 : 312–323. [CrossRef]
  32. Lavado A, Oliver G. Jagged1 is necessary for postnatal and adult neurogenesis in the dentate gyrus. Dev Biol 2014 ; 388 : 11–21. [CrossRef] [PubMed]
  33. Androutsellis-Theotokis A, Leker RR, Soldner F, et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 2006 ; 442 : 823–826. [CrossRef] [PubMed]
  34. Sestan N, Artavanis-Tsakonas S, Rakic P. Contact-dependent inhibition of cortical neurite growth mediated by notch signaling. Science 1999 ; 286 : 741–746. [CrossRef] [PubMed]
  35. Hatten ME, Roussel MF. Development and cancer of the cerebellum. Trends Neurosci 2011 ; 34 : 134–142. [CrossRef] [PubMed]
  36. Rusanescu G, Mao J. Notch3 is necessary for neuronal differentiation and maturation in the adult spinal cord. J Cell Mol Med 2014 ; 18 : 2103–2116. [CrossRef] [PubMed]
  37. Alberi L, Hoey SE, Brai E, et al. Notch signaling in the brain: in good and bad times. Ageing Res Rev 2013 ; 12 : 801–814. [CrossRef] [PubMed]
  38. Schmidt MH, Bicker F, Nikolic I, et al. Epidermal growth factor-like domain 7 (EGFL7) modulates Notch signalling and affects neural stem cell renewal. Nat Cell Biol 2009 ; 11 : 873–880. [CrossRef] [PubMed]
  39. Fancy SP, Chan JR, Baranzini SE, et al. Myelin regeneration: a recapitulation of development? Annu Rev Neurosci 2011 ; 34 : 21–43. [CrossRef] [PubMed]
  40. Nakahara J, Kanekura K, Nawa M, et al. Abnormal expression of TIP30 and arrested nucleocytoplasmic transport within oligodendrocyte precursor cells in multiple sclerosis. J Clin Invest 2009 ; 119 : 169–181. [PubMed]
  41. Hammond TR, Gadea A, Dupree J, et al. Astrocyte-derived endothelin-1 inhibits remyelination through notch activation. Neuron 2014 ; 81 : 588–602. [CrossRef] [PubMed]
  42. Dirian L, Galant S, Coolen M, et al. Spatial regionalization and heterochrony in the formation of adult pallial neural stem cells. Dev Cell 2014 ; 30 : 123–136. [CrossRef] [PubMed]
  43. Le Caignec C. Pathologies humaines et récepteurs Notch. Med Sci (Paris) 2011 ; 27 : 593–595. [CrossRef] [EDP Sciences] [PubMed]
  44. Mayeuf A, Relaix F. La voie Notch : du développement à la régéneration muscle squelettique. Med Sci (Paris) 2011 ; 27 : 521–526. [CrossRef] [EDP Sciences] [PubMed]
  45. Andersson ER, Lendahl U. Therapeutic modulation of Notch signalling: are we there yet? Nat Rev Drug Discov 2014 ; 13 : 357–378. [CrossRef] [PubMed]
  46. Angonin D, Marcy G, Raineteau O. Influence des morphogènessur la régionalisation de la zone sous-ventriculaire postnatale. Med Sci (Paris) 2015 ; 31 : 968–970. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.