Free Access
Issue
Med Sci (Paris)
Volume 31, Number 12, Décembre 2015
Page(s) 1126 - 1132
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153112016
Published online 16 December 2015
  1. Virchow RLK. Die cellularpathologie in ihrer begründung auf physiologische und pathologische gewebelehre. Berlin : A. Hirschwald, 1858; xvi : 440 p. [Google Scholar]
  2. Luisi PL. Toward the engineering of minimal living cells. Anat Rec 2002 ; 268 : 208–214. [Google Scholar]
  3. Noireaux V, Maeda YT, Libchaber A. Development of an artificial cell, from self-organization to computation and self-reproduction. Proc Natl Acad Sci USA 2011 ; 108 : 3473–3480. [Google Scholar]
  4. Hockenberry AJ, Jewett MC. Synthetic in vitro circuits. Curr Opin Chem Biol 2012 ; 16 : 253–259. [CrossRef] [PubMed] [Google Scholar]
  5. Caschera F, Stano P, Luisi PL. Reactivity and fusion between cationic vesicles and fatty acid anionic vesicles. J Colloid Interface Sci 2010 ; 345 : 561–565. [CrossRef] [PubMed] [Google Scholar]
  6. Sokolova E, Spruijt E, Hansen MMK, et al. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. Proc Natl Acad Sci USA 2013 ; 110 : 11692–11697. [CrossRef] [Google Scholar]
  7. Mann S. Systems of creation: the emergence of life from nonliving matter. Accounts Chem Res 2012 ; 45 : 2131–2141. [CrossRef] [Google Scholar]
  8. Forlin M, Lentini R, Mansy SS. Cellular imitations. Curr Opin Chem Biol 2012 ; 16 : 586–592. [CrossRef] [PubMed] [Google Scholar]
  9. Ichihashi N, Matsuura T, Kita H, et al. Constructing partial models of cells. Cold spring Harb Perspect Biol 2010 ; 2 : a004945. [CrossRef] [PubMed] [Google Scholar]
  10. Loakes D, Holliger P. Darwinian chemistry: towards the synthesis of a simple cell. Mol Biosyst 2009 ; 5 : 686–694. [CrossRef] [PubMed] [Google Scholar]
  11. Forster AC, Church GM. Towards synthesis of a minimal cell. Mol Syst Biol 2006 ; 2 : 45. [CrossRef] [PubMed] [Google Scholar]
  12. Jewett MC, Forster AC. Update on designing and building minimal cells. Curr Opin Biotech 2010 ; 21 : 697–703. [CrossRef] [Google Scholar]
  13. Sole RV. Evolution and self-assembly of protocells. Int J Biochem Cell Biol 2009 ; 41 : 274–284. [CrossRef] [PubMed] [Google Scholar]
  14. Lawless JG, Yuen GU. Quantification of monocarboxylic acids in the Murchison carbonaceous meteorite. Nature 1979 ; 282 : 396–398. [CrossRef] [Google Scholar]
  15. Mansy SS, Szostak JW. Reconstructing the emergence of cellular life through the synthesis of model protocells. Cold Spring Harb Symp Quant Biol 2009 ; 74 : 47–54. [CrossRef] [PubMed] [Google Scholar]
  16. Hanczyc MM, Fujikawa SM, Szostak JW. Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 2003 ; 302 : 618–622. [CrossRef] [PubMed] [Google Scholar]
  17. Rasmussen S, Chen LH, Nilsson M, Abe S. Bridging nonliving and living matter. Artif Life 2003 ; 9 : 269–316. [CrossRef] [PubMed] [Google Scholar]
  18. Hammer DA, Kamat NP. Towards an artificial cell. Febs Lett 2012 ; 586 : 2882–2890. [CrossRef] [PubMed] [Google Scholar]
  19. Kamat NP, Katz JS, Hammer DA. Engineering polymersome protocells. J Phys Chem Lett 2011 ; 2 : 1612–1623. [CrossRef] [PubMed] [Google Scholar]
  20. Marguet M, Bonduelle C, Lecommandoux S. Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function. Chem Soc Rev 2013 ; 42 : 512–529. [CrossRef] [PubMed] [Google Scholar]
  21. Peters RJ, Marguet M, Marais S, et al. Cascade reactions in multicompartmentalized polymersomes. Angew Chem Int Ed Engl 2014 ; 53 : 146–150. [CrossRef] [PubMed] [Google Scholar]
  22. Lee JS, Feijen J. Polymersomes for drug delivery: design, formation and characterization. J Control Release 2012 ; 161 : 473–483. [CrossRef] [PubMed] [Google Scholar]
  23. Gibson DG, Benders GA, Andrews-Pfannkoch C, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 2008 ; 319 : 1215–1220. [CrossRef] [PubMed] [Google Scholar]
  24. Gibson DG, Glass JI, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 2010 ; 329 : 52–56. [CrossRef] [PubMed] [Google Scholar]
  25. Von Neumann J. The general and logical theory of automata. In : Jeffress LA, ed. Cerebral mechanisms in behavior: the Hixon symposium. New York : Wiley, 1951. [Google Scholar]
  26. Danchin A. Saurons-nous construire une bactérie synthétique ? Med Sci (Paris) 2008 ; 24 : 533–540. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  27. Minton AP. How can biochemical reactions within cells differ from those in test tubes? J Cell Sci 2006 ; 119 : 2863–2869. [CrossRef] [PubMed] [Google Scholar]
  28. Li R, Bowerman B. Symmetry breaking in biology. Cold Spring Harb Perspect Biol 2010 ; 2 : a003475. [PubMed] [Google Scholar]
  29. Baumgart T, Hess ST, Webb WW. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 2003 ; 425 : 821–824. [CrossRef] [PubMed] [Google Scholar]
  30. Atkinson DE. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 1968 ; 7 : 4030–4034. [Google Scholar]
  31. Caschera F, Noireaux V. Integration of biological parts toward the synthesis of a minimal cell. Curr Opin Chem Biol 2014 ; 22 : 85–91. [CrossRef] [PubMed] [Google Scholar]
  32. Walde P, Cosentino K, Engel H, Stano P. Giant vesicles: preparations and applications. Chembiochem 2010 ; 11 : 848–865. [CrossRef] [PubMed] [Google Scholar]
  33. Soga H, Fujii S, Yomo T, et al. In vitro membrane protein synthesis inside cell-sized vesicles reveals the dependence of membrane protein integration on vesicle volume. ACS Synth Biol 2014 ; 3 : 372–379. [CrossRef] [PubMed] [Google Scholar]
  34. Matsubayashi H, Kuruma Y, Ueda T. In vitro synthesis of the E. coli Sec translocon from DNA. Angew Chem Int Ed Engl 2014 ; 53 : 7535–7538. [CrossRef] [PubMed] [Google Scholar]
  35. Shin J, Noireaux V. Study of messenger RNA inactivation and protein degradation in an Escherichia coli cell-free expression system. J Biol Eng 2010 ; 4 : 9. [CrossRef] [PubMed] [Google Scholar]
  36. Koonin EV, Mushegian AR. Complete genome sequences of cellular life forms: glimpses of theoretical evolutionary genomics. Curr Opin Genet Dev 1996 ; 6 : 757–762. [CrossRef] [PubMed] [Google Scholar]
  37. Kolisnychenko V, Plunkett G 3rd, Herring CD, et al. Engineering a reduced Escherichia coli genome. Genome Res 2002 ; 12 : 640–647. [CrossRef] [PubMed] [Google Scholar]
  38. Gil R, Silva FJ, Pereto J, Moya A. Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 2004 ; 68 : 518–537. [CrossRef] [PubMed] [Google Scholar]
  39. Glass JI, Assad-Garcia N, Alperovich N, et al. Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 2006 ; 103 : 425–430. [CrossRef] [Google Scholar]
  40. Luisi PL. Chemical aspects of synthetic biology. Chem Biodivers 2007 ; 4 : 603–621. [CrossRef] [PubMed] [Google Scholar]
  41. Smanski MJ, Bhatia S, Zhao DH, et al. Functional optimization of gene clusters by combinatorial design and assembly. Nat Biotechnol 2014 ; 32 : 1241–1249. [CrossRef] [PubMed] [Google Scholar]
  42. Fallah-Araghi A, Baret JC, Ryckelynck M, Griffiths AD. A completely in vitro ultrahigh-throughput droplet-based microfluidic screening system for protein engineering and directed evolution. Lab Chip 2012 ; 12 : 882–891. [CrossRef] [PubMed] [Google Scholar]
  43. Hodgman CE, Jewett MC. Cell-free synthetic biology: thinking outside the cell. Metab Eng 2012 ; 14 : 261–269. [CrossRef] [PubMed] [Google Scholar]
  44. Nirenberg M. Historical review: deciphering the genetic code: a personal account. Trends Biochem Sci 2004 ; 29 : 46–54. [CrossRef] [PubMed] [Google Scholar]
  45. Ishihama Y, Schmidt T, Rappsilber J, et al. Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics 2008 ; 9 : 102. [CrossRef] [PubMed] [Google Scholar]
  46. Shin J, Jardine P, Noireaux V. Genome replication, synthesis, and assembly of the bacteriophage T7 in a single cell-free reaction. ACS Synth Biol 2012 ; 1 : 408–413. [CrossRef] [PubMed] [Google Scholar]
  47. Shin J, Noireaux V. An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synth. Biol 2012 ; 1 : 29–41. [Google Scholar]
  48. Lapique N, Benenson Y. Vue de l’intérieur : des circuits génétiques pour l’analyse de profils moléculaires intracellulaires. Med Sci (Paris) 2015 ; 31 : 487–491. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Carlson ED, Gan R, Hodgman CE, Jewett MC. Cell-free protein synthesis: applications come of age. Biotechnol Adv 2012 ; 30 : 1185–1194. [CrossRef] [PubMed] [Google Scholar]
  50. Ng PP, Jia M, Patel KG, et al. A vaccine directed to B cells and produced by cell-free protein synthesis generates potent antilymphoma immunity. Proc Natl Acad Sci USA 2012 ; 109 : 14526–14531. [CrossRef] [Google Scholar]
  51. Caschera F, Noireaux V. Synthesis of 2,3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system. Biochimie 2014 ; 99 : 162–168. [CrossRef] [PubMed] [Google Scholar]
  52. Nourian Z, Danelon C. Linking genotype and phenotype in protein synthesizing liposomes with external supply of resources. ACS Synth Biol 2013 ; 2 : 186–193. [CrossRef] [PubMed] [Google Scholar]
  53. Hosoda K, Sunami T, Kazuta Y, et al. Quantitative study of the structure of multilamellar giant liposomes as a container of protein synthesis reaction. Langmuir 2008 ; 24 : 13540–13548. [CrossRef] [PubMed] [Google Scholar]
  54. Katzen F, Peterson TC, Kudlicki W. Membrane protein expression: no cells required. Trends Biotechnol 2009 ; 27 : 455–460. [CrossRef] [PubMed] [Google Scholar]
  55. Noireaux V, Libchaber A. A vesicle bioreactor as a step toward an artificial cell assembly. Proc Natl Acad Sci USA 2004 ; 101 : 17669–17674. [Google Scholar]
  56. Maeda YT, Nakadai T, Shin J, et al. Assembly of MreB filaments on liposome membranes: a synthetic biology approach. ACS Synth Biol 2012 ; 1 : 53–59. [CrossRef] [PubMed] [Google Scholar]
  57. Liu YJ, Hansen GP, Venancio-Marques A, Baigl D. Cell-free preparation of functional and triggerable giant proteoliposomes. Chembiochem 2013 ; 14 : 2243–2247. [CrossRef] [PubMed] [Google Scholar]
  58. Fujii S, Matsuura T, Sunami T, et al. Liposome display for in vitro selection and evolution of membrane proteins. Nat Protoc 2014 ; 9 : 1578–1591. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.