Free Access
Issue
Med Sci (Paris)
Volume 31, Number 8-9, Août–Septembre 2015
Page(s) 742 - 747
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153108012
Published online 04 September 2015
  1. Derbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2001 ; 2 : 1032–1039. [CrossRef] [PubMed] [Google Scholar]
  2. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008 ; 133 : 775–787. [CrossRef] [PubMed] [Google Scholar]
  3. Anderson MS, Venanzi ES, Klein L, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 2002 ; 298 : 1395–1401. [CrossRef] [PubMed] [Google Scholar]
  4. Hamazaki Y, Fujita H, Kobayashi T, et al. Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nat Immunol 2007 ; 8 : 304–311. [CrossRef] [PubMed] [Google Scholar]
  5. Sekai M, Hamazaki Y, Minato N. Medullary thymic epithelial stem cells maintain a functional thymus to ensure lifelong central T cell tolerance. Immunity 2014 ; 41 : 753–761. [CrossRef] [PubMed] [Google Scholar]
  6. Irla M, Hollander G, Reith W. Control of central self-tolerance induction by autoreactive CD4+ thymocytes. Trends Immunol 2010 ; 31 : 71–79. [CrossRef] [PubMed] [Google Scholar]
  7. Gray D, Abramson J, Benoist C, Mathis D. Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire. J Exp Med 2007 ; 204 : 2521–2528. [CrossRef] [PubMed] [Google Scholar]
  8. Rossi SW, Kim MY, Leibbrandt A, et al. RANK signals from CD4+3- inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J Exp Med 2007 ; 204 : 1267–1272. [CrossRef] [PubMed] [Google Scholar]
  9. Irla M.. Cellules épithéliales médullaires thymiques exprimant Aire : acteurs clés dans l’induction de la tolérance des cellules T. Med Sci (Paris) 2012 ; 28 : 146–149. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Irla M, Hugues S, Gill J, et al. Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity. Immunity 2008 ; 29 : 451–463. [CrossRef] [PubMed] [Google Scholar]
  11. Irla M, Guerri L, Guenot J, et al. Antigen recognition by autoreactive CD4+ thymocytes drives homeostasis of the thymic medulla. PLoS One 2012 ; 7 : e52591. [CrossRef] [PubMed] [Google Scholar]
  12. Sansom SN, Shikama-Dorn N, Zhanybekova S, et al. Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res 2014 ; 24 : 1918–1931. [CrossRef] [PubMed] [Google Scholar]
  13. Nishikawa Y, Hirota F, Yano M, et al. Biphasic Aire expression in early embryos and in medullary thymic epithelial cells before end-stage terminal differentiation. J Exp Med 2010 ; 207 : 963–971. [CrossRef] [PubMed] [Google Scholar]
  14. Metzger TC, Khan IS, Gardner JM, et al. Lineage tracing and cell ablation identify a post-Aire-expressing thymic epithelial cell population. Cell Rep 2013 ; 5 : 166–179. [CrossRef] [PubMed] [Google Scholar]
  15. Wang X, Laan M, Bichele R, et al. Post-Aire maturation of thymic medullary epithelial cells involves selective expression of keratinocyte-specific autoantigens. Front Immunol 2012 ; 3 : 19. [PubMed] [Google Scholar]
  16. Yano M, Kuroda N, Han H, et al. Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance. J Exp Med 2008 ; 205 : 2827–2838. [CrossRef] [PubMed] [Google Scholar]
  17. Watanabe N, Wang YH, Lee HK, et al. Hassall’s corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 2005 ; 436 : 1181–1185. [CrossRef] [PubMed] [Google Scholar]
  18. Gillard GO, Dooley J, Erickson M, et al. Aire-dependent alterations in medullary thymic epithelium indicate a role for Aire in thymic epithelial differentiation. J Immunol 2007 ; 178 : 3007–3015. [CrossRef] [PubMed] [Google Scholar]
  19. Dooley J, Erickson M, Farr AG. Alterations of the medullary epithelial compartment in the Aire-deficient thymus: implications for programs of thymic epithelial differentiation. J Immunol 2008 ; 181 : 5225–5232. [CrossRef] [PubMed] [Google Scholar]
  20. Mathis D, Benoist C. A decade of AIRE. Nat Rev Immunol 2007 ; 7 : 645–650. [CrossRef] [PubMed] [Google Scholar]
  21. Aaltonen J, Bjorses P. Cloning of the APECED gene provides new insight into human autoimmunity. Ann Med 1999 ; 31 : 111–116. [CrossRef] [PubMed] [Google Scholar]
  22. Halonen M, Kangas H, Ruppell T, et al. APECED-causing mutations in AIRE reveal the functional domains of the protein. Hum Mutat 2004 ; 23 : 245–257. [CrossRef] [PubMed] [Google Scholar]
  23. Ilmarinen T, Melen K, Kangas H, et al. The monopartite nuclear localization signal of autoimmune regulator mediates its nuclear import and interaction with multiple importin alpha molecules. FEBS J 2006 ; 273 : 315–324. [CrossRef] [PubMed] [Google Scholar]
  24. Purohit S, Kumar PG, Laloraya M, She JX. Mapping DNA-binding domains of the autoimmune regulator protein. Biochem Biophys Res Commun 2005 ; 327 : 939–944. [CrossRef] [PubMed] [Google Scholar]
  25. Zumer K, Low AK, Jiang H, et al. Unmodified histone H3K4 and DNA-dependent protein kinase recruit autoimmune regulator to target genes. Mol Cell Biol 2012 ; 32 : 1354–1362. [CrossRef] [PubMed] [Google Scholar]
  26. Koh AS, Kuo AJ, Park SY, et al. Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity. Proc Natl Acad Sci USA 2008 ; 105 : 15878–15883. [CrossRef] [Google Scholar]
  27. Org T, Chignola F, Hetényi C, et al. The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. EMBO Rep 2008 ; 9 : 370–376. [CrossRef] [PubMed] [Google Scholar]
  28. Gaetani M, Matafora V, Saare M, et al. AIRE-PHD fingers are structural hubs to maintain the integrity of chromatin-associated interactome. Nucleic Acids Res 2012 ; 40 : 11756–11768. [CrossRef] [PubMed] [Google Scholar]
  29. Zumer K, Plemenitas A, Saksela K, Peterlin BM. Patient mutation in AIRE disrupts P-TEFb binding and target gene transcription. Nucleic Acids Res 2011 ; 39 : 7908–7919. [CrossRef] [PubMed] [Google Scholar]
  30. Giraud M, Yoshida H, Abramson J, et al. Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proc Natl Acad Sci USA 2012 ; 109 : 535–540. [CrossRef] [Google Scholar]
  31. Liiv I, Rebane A, Org T, et al. DNA-PK contributes to the phosphorylation of AIRE: importance in transcriptional activity. Biochim Biophys Acta 2008 ; 1783 : 74–83. [CrossRef] [PubMed] [Google Scholar]
  32. Peterson P, Org T, Rebane A. Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nat Rev Immunol 2008 ; 8 : 948–957. [CrossRef] [PubMed] [Google Scholar]
  33. Rattay K, Claude J, Rezavandy E, et al. Homeodomain-interacting protein kinase 2, a novel autoimmune regulator interaction partner, modulates promiscuous gene expression in medullary thymic epithelial cells. J Immunol 2015 ; 194 : 921–928. [CrossRef] [PubMed] [Google Scholar]
  34. Giraud M, Jmari N, Du L, et al. An RNAi screen for Aire cofactors reveals a role for Hnrnpl in polymerase release and Aire-activated ectopic transcription. Proc Natl Acad Sci USA 2014 ; 111 : 1491–1496. [CrossRef] [Google Scholar]
  35. Anderson MS, Venanzi ES, Chen Z, et al. The cellular mechanism of Aire control of T cell tolerance. Immunity 2005 ; 23 : 227–239. [CrossRef] [PubMed] [Google Scholar]
  36. Hinterberger M, Aichinger M, Prazeres da Costa O, et al. Autonomous role of medullary thymic epithelial cells in central CD4+ T cell tolerance. Nat Immunol 2010 ; 11 : 512–519. [CrossRef] [PubMed] [Google Scholar]
  37. Aschenbrenner K, D’Cruz LM, Vollmann EH, et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol 2007 ; 8 : 351–358. [CrossRef] [PubMed] [Google Scholar]
  38. Lei Y, Ripen AM, Ishimaru N, et al. Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. J Exp Med 2011 ; 208 : 383–394. [CrossRef] [PubMed] [Google Scholar]
  39. Malchow S, Leventhal DS, Nishi S, et al. Aire-dependent thymic development of tumor-associated regulatory T cells. Science 2013 ; 339 : 1219–1224. [CrossRef] [PubMed] [Google Scholar]
  40. Takahama Y.. Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 2006 ; 6 : 127–135. [CrossRef] [PubMed] [Google Scholar]
  41. Laan M, Kisand K, Kont V, et al. Autoimmune regulator deficiency results in decreased expression of CCR4 and CCR7 ligands and in delayed migration of CD4+ thymocytes. J Immunol 2009 ; 183 : 7682–7691. [CrossRef] [PubMed] [Google Scholar]
  42. Ueno T, Hara K, Willis MS, et al. Role for CCR7 ligands in the emigration of newly generated T lymphocytes from the neonatal thymus. Immunity 2002 ; 16 : 205–218. [CrossRef] [PubMed] [Google Scholar]
  43. Kurobe H, Liu C, Ueno T, et al. CCR7-dependent cortex-to-medulla migration of positively selected thymocytes is essential for establishing central tolerance. Immunity 2006 ; 24 : 165–177. [CrossRef] [PubMed] [Google Scholar]
  44. Hubert FX, Kinkel SA, Davey GM, et al. Aire regulates the transfer of antigen from mTECs to dendritic cells for induction of thymic tolerance. Blood 2011 ; 118 : 2462–2472. [CrossRef] [PubMed] [Google Scholar]
  45. Gardner JM, Metzger TC, McMahon EJ, et al. Extrathymic Aire-expressing cells are a distinct bone marrow-derived population that induce functional inactivation of CD4+ T cells. Immunity 2013 ; 39 : 560–572. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.