Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 8-9, Août–Septembre 2015
Page(s) 742 - 747
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153108012
Publié en ligne 4 septembre 2015
  1. Derbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2001 ; 2 : 1032–1039. [CrossRef] [PubMed]
  2. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008 ; 133 : 775–787. [CrossRef]
  3. Anderson MS, Venanzi ES, Klein L, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 2002 ; 298 : 1395–1401. [CrossRef] [PubMed]
  4. Hamazaki Y, Fujita H, Kobayashi T, et al. Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nat Immunol 2007 ; 8 : 304–311. [CrossRef] [PubMed]
  5. Sekai M, Hamazaki Y, Minato N. Medullary thymic epithelial stem cells maintain a functional thymus to ensure lifelong central T cell tolerance. Immunity 2014 ; 41 : 753–761. [CrossRef] [PubMed]
  6. Irla M, Hollander G, Reith W. Control of central self-tolerance induction by autoreactive CD4+ thymocytes. Trends Immunol 2010 ; 31 : 71–79. [CrossRef] [PubMed]
  7. Gray D, Abramson J, Benoist C, Mathis D. Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire. J Exp Med 2007 ; 204 : 2521–2528. [CrossRef] [PubMed]
  8. Rossi SW, Kim MY, Leibbrandt A, et al. RANK signals from CD4+3- inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J Exp Med 2007 ; 204 : 1267–1272. [CrossRef] [PubMed]
  9. Irla M.. Cellules épithéliales médullaires thymiques exprimant Aire : acteurs clés dans l’induction de la tolérance des cellules T. Med Sci (Paris) 2012 ; 28 : 146–149. [CrossRef] [EDP Sciences] [PubMed]
  10. Irla M, Hugues S, Gill J, et al. Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity. Immunity 2008 ; 29 : 451–463. [CrossRef] [PubMed]
  11. Irla M, Guerri L, Guenot J, et al. Antigen recognition by autoreactive CD4+ thymocytes drives homeostasis of the thymic medulla. PLoS One 2012 ; 7 : e52591. [CrossRef] [PubMed]
  12. Sansom SN, Shikama-Dorn N, Zhanybekova S, et al. Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res 2014 ; 24 : 1918–1931. [CrossRef] [PubMed]
  13. Nishikawa Y, Hirota F, Yano M, et al. Biphasic Aire expression in early embryos and in medullary thymic epithelial cells before end-stage terminal differentiation. J Exp Med 2010 ; 207 : 963–971. [CrossRef] [PubMed]
  14. Metzger TC, Khan IS, Gardner JM, et al. Lineage tracing and cell ablation identify a post-Aire-expressing thymic epithelial cell population. Cell Rep 2013 ; 5 : 166–179. [CrossRef] [PubMed]
  15. Wang X, Laan M, Bichele R, et al. Post-Aire maturation of thymic medullary epithelial cells involves selective expression of keratinocyte-specific autoantigens. Front Immunol 2012 ; 3 : 19. [PubMed]
  16. Yano M, Kuroda N, Han H, et al. Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance. J Exp Med 2008 ; 205 : 2827–2838. [CrossRef] [PubMed]
  17. Watanabe N, Wang YH, Lee HK, et al. Hassall’s corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 2005 ; 436 : 1181–1185. [CrossRef] [PubMed]
  18. Gillard GO, Dooley J, Erickson M, et al. Aire-dependent alterations in medullary thymic epithelium indicate a role for Aire in thymic epithelial differentiation. J Immunol 2007 ; 178 : 3007–3015. [CrossRef]
  19. Dooley J, Erickson M, Farr AG. Alterations of the medullary epithelial compartment in the Aire-deficient thymus: implications for programs of thymic epithelial differentiation. J Immunol 2008 ; 181 : 5225–5232. [CrossRef]
  20. Mathis D, Benoist C. A decade of AIRE. Nat Rev Immunol 2007 ; 7 : 645–650. [CrossRef] [PubMed]
  21. Aaltonen J, Bjorses P. Cloning of the APECED gene provides new insight into human autoimmunity. Ann Med 1999 ; 31 : 111–116. [CrossRef] [PubMed]
  22. Halonen M, Kangas H, Ruppell T, et al. APECED-causing mutations in AIRE reveal the functional domains of the protein. Hum Mutat 2004 ; 23 : 245–257. [CrossRef] [PubMed]
  23. Ilmarinen T, Melen K, Kangas H, et al. The monopartite nuclear localization signal of autoimmune regulator mediates its nuclear import and interaction with multiple importin alpha molecules. FEBS J 2006 ; 273 : 315–324. [CrossRef] [PubMed]
  24. Purohit S, Kumar PG, Laloraya M, She JX. Mapping DNA-binding domains of the autoimmune regulator protein. Biochem Biophys Res Commun 2005 ; 327 : 939–944. [CrossRef] [PubMed]
  25. Zumer K, Low AK, Jiang H, et al. Unmodified histone H3K4 and DNA-dependent protein kinase recruit autoimmune regulator to target genes. Mol Cell Biol 2012 ; 32 : 1354–1362. [CrossRef] [PubMed]
  26. Koh AS, Kuo AJ, Park SY, et al. Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity. Proc Natl Acad Sci USA 2008 ; 105 : 15878–15883. [CrossRef]
  27. Org T, Chignola F, Hetényi C, et al. The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. EMBO Rep 2008 ; 9 : 370–376. [CrossRef] [PubMed]
  28. Gaetani M, Matafora V, Saare M, et al. AIRE-PHD fingers are structural hubs to maintain the integrity of chromatin-associated interactome. Nucleic Acids Res 2012 ; 40 : 11756–11768. [CrossRef] [PubMed]
  29. Zumer K, Plemenitas A, Saksela K, Peterlin BM. Patient mutation in AIRE disrupts P-TEFb binding and target gene transcription. Nucleic Acids Res 2011 ; 39 : 7908–7919. [CrossRef] [PubMed]
  30. Giraud M, Yoshida H, Abramson J, et al. Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proc Natl Acad Sci USA 2012 ; 109 : 535–540. [CrossRef]
  31. Liiv I, Rebane A, Org T, et al. DNA-PK contributes to the phosphorylation of AIRE: importance in transcriptional activity. Biochim Biophys Acta 2008 ; 1783 : 74–83. [CrossRef] [PubMed]
  32. Peterson P, Org T, Rebane A. Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nat Rev Immunol 2008 ; 8 : 948–957. [CrossRef] [PubMed]
  33. Rattay K, Claude J, Rezavandy E, et al. Homeodomain-interacting protein kinase 2, a novel autoimmune regulator interaction partner, modulates promiscuous gene expression in medullary thymic epithelial cells. J Immunol 2015 ; 194 : 921–928. [CrossRef]
  34. Giraud M, Jmari N, Du L, et al. An RNAi screen for Aire cofactors reveals a role for Hnrnpl in polymerase release and Aire-activated ectopic transcription. Proc Natl Acad Sci USA 2014 ; 111 : 1491–1496. [CrossRef]
  35. Anderson MS, Venanzi ES, Chen Z, et al. The cellular mechanism of Aire control of T cell tolerance. Immunity 2005 ; 23 : 227–239. [CrossRef] [PubMed]
  36. Hinterberger M, Aichinger M, Prazeres da Costa O, et al. Autonomous role of medullary thymic epithelial cells in central CD4+ T cell tolerance. Nat Immunol 2010 ; 11 : 512–519. [CrossRef] [PubMed]
  37. Aschenbrenner K, D’Cruz LM, Vollmann EH, et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol 2007 ; 8 : 351–358. [CrossRef] [PubMed]
  38. Lei Y, Ripen AM, Ishimaru N, et al. Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. J Exp Med 2011 ; 208 : 383–394. [CrossRef] [PubMed]
  39. Malchow S, Leventhal DS, Nishi S, et al. Aire-dependent thymic development of tumor-associated regulatory T cells. Science 2013 ; 339 : 1219–1224. [CrossRef] [PubMed]
  40. Takahama Y.. Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 2006 ; 6 : 127–135. [CrossRef] [PubMed]
  41. Laan M, Kisand K, Kont V, et al. Autoimmune regulator deficiency results in decreased expression of CCR4 and CCR7 ligands and in delayed migration of CD4+ thymocytes. J Immunol 2009 ; 183 : 7682–7691. [CrossRef]
  42. Ueno T, Hara K, Willis MS, et al. Role for CCR7 ligands in the emigration of newly generated T lymphocytes from the neonatal thymus. Immunity 2002 ; 16 : 205–218. [CrossRef] [PubMed]
  43. Kurobe H, Liu C, Ueno T, et al. CCR7-dependent cortex-to-medulla migration of positively selected thymocytes is essential for establishing central tolerance. Immunity 2006 ; 24 : 165–177. [CrossRef] [PubMed]
  44. Hubert FX, Kinkel SA, Davey GM, et al. Aire regulates the transfer of antigen from mTECs to dendritic cells for induction of thymic tolerance. Blood 2011 ; 118 : 2462–2472. [CrossRef] [PubMed]
  45. Gardner JM, Metzger TC, McMahon EJ, et al. Extrathymic Aire-expressing cells are a distinct bone marrow-derived population that induce functional inactivation of CD4+ T cells. Immunity 2013 ; 39 : 560–572. [CrossRef] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.