Free Access
Med Sci (Paris)
Volume 31, Number 8-9, Août–Septembre 2015
Page(s) 735 - 741
Section M/S Revues
Published online 04 September 2015
  1. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 1952 ; 117 : 500–544. [Google Scholar]
  2. Starace DM, Bezanilla F. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 2004 ; 427 : 548–553. [CrossRef] [PubMed] [Google Scholar]
  3. Starace DM, Stefani E, Bezanilla F. Voltage-dependent proton transport by the voltage sensor of the Shaker K+ channel. Neuron 1997 ; 19 : 1319–1327. [CrossRef] [PubMed] [Google Scholar]
  4. Tombola F, Pathak MM, Isacoff EY. Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron 2005 ; 45 : 379–388. [CrossRef] [PubMed] [Google Scholar]
  5. Sokolov S, Scheuer T, Catterall WA. Ion permeation through a voltage-sensitive gating pore in brain sodium channels having voltage sensor mutations. Neuron 2005 ; 47 : 183–189. [CrossRef] [PubMed] [Google Scholar]
  6. Moreau A, Gosselin-Badaroudine P, Chahine M. Molecular biology and biophysical properties of ion channel gating pores. Q Rev Biophys 2014 ; 47 : 364–388. [CrossRef] [PubMed] [Google Scholar]
  7. Tao X, Lee A, Limapichat W, et al. A gating charge transfer center in voltage sensors. Science 2010 ; 328 : 67–73. [CrossRef] [PubMed] [Google Scholar]
  8. Delemotte L, Klein ML, Tarek M. Molecular dynamics simulations of voltage-gated cation channels: insights on voltage-sensor domain function and modulation. Front Pharmacol 2012 ; 3 : 97. [CrossRef] [PubMed] [Google Scholar]
  9. Jensen MO, Jogini V, Borhani DW, et al. Mechanism of voltage gating in potassium channels. Science 2012 ; 336 : 229–233. [CrossRef] [PubMed] [Google Scholar]
  10. Tarek M, Delemotte L. Omega currents in voltage-gated ion channels: what can we learn from uncovering the voltage-sensing mechanism using MD simulations? Acc Chem Res 2013 ; 46 : 2755–2762. [CrossRef] [PubMed] [Google Scholar]
  11. Amaral C, Carnevale V, Klein ML, Treptow W. Exploring conformational states of the bacterial voltage-gated sodium channel NavAb via molecular dynamics simulations. Proc Natl Acad Sci USA 2012 ; 109 : 21336–21341. [CrossRef] [Google Scholar]
  12. Delemotte L, Tarek M, Klein ML, et al. Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations. Proc Natl Acad Sci USA 2011; 108 : 6109–6114. [CrossRef] [Google Scholar]
  13. Moreau A, Gosselin-Badaroudine P, Chahine M. Biophysics, pathophysiology, and pharmacology of ion channel gating pores. Front Pharmacol 2014 ; 5 : 53. [CrossRef] [PubMed] [Google Scholar]
  14. Delemotte L, Treptow W, Klein ML, Tarek M. Effect of sensor domain mutations on the properties of voltage-gated ion channels: molecular dynamics studies of the potassium channel Kv1.2. Biophys J 2010 ; 99 : L72–L74. [CrossRef] [PubMed] [Google Scholar]
  15. Khalili-Araghi F, Tajkhorshid E, Roux B, Schulten K. Molecular dynamics investigation of the omega-current in the Kv1.2 voltage sensor domains. Biophys J 2012 ; 102 : 258–267. [CrossRef] [PubMed] [Google Scholar]
  16. Gosselin-Badaroudine P, Delemotte L, Moreau A, et al. Gating pore currents and the resting state of Nav1.4 voltage sensor domains. Proc Natl Acad Sci USA 2012; 109 : 19250–19255. [CrossRef] [Google Scholar]
  17. Talbott JH. Periodic paralysis: a clinical syndrome. Medicine (Baltimore) 1941 ; 20 : 85–143. [CrossRef] [Google Scholar]
  18. Cannon SC. Pathomechanisms in channelopathies of skeletal muscle and brain. Annu Rev Neurosci 2006 ; 29 : 387–415. [CrossRef] [PubMed] [Google Scholar]
  19. Sung CC, Cheng CJ, Lo YF, et al. Genotype and phenotype analysis of patients with sporadic periodic paralysis. Am J Med Sci 2012 ; 343 : 281–285. [CrossRef] [PubMed] [Google Scholar]
  20. Jurkat-Rott K, Mitrovic N, Hang C, et al. Voltage-sensor sodium channel mutations cause hypokalemic periodic paralysis type 2 by enhanced inactivation and reduced current. Proc Natl Acad Sci USA 2000 ; 97 : 9549–9554. [CrossRef] [Google Scholar]
  21. Lapie P, Goudet C, Nargeot J, et al. Electrophysiological properties of the hypokalaemic periodic paralysis mutation (R528H) of the skeletal muscle alpha 1s subunit as expressed in mouse L cells. FEBS Lett 1996 ; 382 : 244–248. [CrossRef] [PubMed] [Google Scholar]
  22. Morrill JA, Brown RH Jr, Cannon SC. Gating of the L-type Ca channel in human skeletal myotubes: an activation defect caused by the hypokalemic periodic paralysis mutation R528H. J Neurosci 1998 ; 18 : 10320–10334. [PubMed] [Google Scholar]
  23. Sokolov S, Scheuer T, Catterall WA. Gating pore current in an inherited ion channelopathy. Nature 2007 ; 446 : 76–78. [CrossRef] [PubMed] [Google Scholar]
  24. Struyk AF, Cannon SC. A Na+ channel mutation linked to hypokalemic periodic paralysis exposes a proton-selective gating pore. J Gen Physiol 2007 ; 130 : 11–20. [CrossRef] [PubMed] [Google Scholar]
  25. Wu F, Mi W, Hernandez-Ochoa EO, et al. A calcium channel mutant mouse model of hypokalemic periodic paralysis. J Clin Invest 2012 ; 122 : 4580–4591. [CrossRef] [PubMed] [Google Scholar]
  26. Gosselin-Badaroudine P, Moreau A, Chahine M. Nav 1.5 mutations linked to dilated cardiomyopathy phenotypes: is the gating pore current the missing link? Channels (Austin) 2014 ; 8 : 90–94. [CrossRef] [PubMed] [Google Scholar]
  27. Beckermann TM, McLeod K, Murday V, et al. Novel SCN5A mutation in amiodarone-responsive multifocal ventricular ectopy-associated cardiomyopathy. Heart Rhythm 2014 ; 11 : 1446–1453. [CrossRef] [PubMed] [Google Scholar]
  28. Bezzina CR, Rook MB, Groenewegen WA, et al. Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system. Circ Res 2003 ; 92 : 159–168. [CrossRef] [PubMed] [Google Scholar]
  29. Mann SA, Castro ML, Ohanian M, et al. R222Q SCN5A mutation is associated with reversible ventricular ectopy and dilated cardiomyopathy. J Am Coll Cardiol 2012 ; 60 : 1566–1573. [CrossRef] [PubMed] [Google Scholar]
  30. Moreau A, Gosselin-Badaroudine P, Delemotte L, et al. Gating pore currents are defects in common with two Nav1.5 mutations in patients with mixed arrhythmias and dilated cardiomyopathy. J Gen Physiol 2015 ; 145 : 93–106. [CrossRef] [PubMed] [Google Scholar]
  31. Gosselin-Badaroudine P, Keller DI, Huang H, et al. A proton leak current through the cardiac sodium channel is linked to mixed arrhythmia and the dilated cardiomyopathy phenotype. PLoS One 2012 ; 7 : e38331. [CrossRef] [PubMed] [Google Scholar]
  32. Miceli F, Vargas E, Bezanilla F, Taglialatela M. Gating currents from Kv7 channels carrying neuronal hyperexcitability mutations in the voltage-sensing domain. Biophys J 2012 ; 102 : 1372–1382. [CrossRef] [PubMed] [Google Scholar]
  33. Jurkat-Rott K, Lerche H, Weber Y, Lehmann-Horn F. Hereditary channelopathies in neurology. Adv Exp Med Biol 2010 ; 686 : 305–334. [CrossRef] [PubMed] [Google Scholar]
  34. Dedek K, Kunath B, Kananura C, et al. Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proc Natl Acad Sci USA 2001 ; 98 : 12272–12277. [CrossRef] [Google Scholar]
  35. Wuttke TV, Jurkat-Rott K, Paulus W, et al. Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations. Neurology 2007 ; 69 : 2045–2053. [CrossRef] [PubMed] [Google Scholar]
  36. Figueroa KP, Minassian NA, Stevanin G, et al. KCNC3: phenotype, mutations, channel biophysics: a study of 260 familial ataxia patients. Hum Mutat 2010 ; 31 : 191–196. [CrossRef] [PubMed] [Google Scholar]
  37. Campos FV, Chanda B, Roux B, Bezanilla F. Two atomic constraints unambiguously position the S4 segment relative to S1 and S2 segments in the closed state of Shaker K channel. Proc Natl Acad Sci USA 2007 ; 104 : 7904–7909. [CrossRef] [Google Scholar]
  38. Chahine M, Blanchet J, El Chemaly A, Bois P. Un canal sans pore ? La structure primaire d’un canal perméable aux protons enfin dévoilée. Med Sci (Paris) 2006 ; 22 : 930–932. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.