Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 8-9, Août–Septembre 2015
Page(s) 735 - 741
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153108011
Publié en ligne 4 septembre 2015
  1. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 1952 ; 117 : 500–544. [CrossRef] [PubMed]
  2. Starace DM, Bezanilla F. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 2004 ; 427 : 548–553. [CrossRef] [PubMed]
  3. Starace DM, Stefani E, Bezanilla F. Voltage-dependent proton transport by the voltage sensor of the Shaker K+ channel. Neuron 1997 ; 19 : 1319–1327. [CrossRef] [PubMed]
  4. Tombola F, Pathak MM, Isacoff EY. Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron 2005 ; 45 : 379–388. [CrossRef] [PubMed]
  5. Sokolov S, Scheuer T, Catterall WA. Ion permeation through a voltage-sensitive gating pore in brain sodium channels having voltage sensor mutations. Neuron 2005 ; 47 : 183–189. [CrossRef] [PubMed]
  6. Moreau A, Gosselin-Badaroudine P, Chahine M. Molecular biology and biophysical properties of ion channel gating pores. Q Rev Biophys 2014 ; 47 : 364–388. [CrossRef] [PubMed]
  7. Tao X, Lee A, Limapichat W, et al. A gating charge transfer center in voltage sensors. Science 2010 ; 328 : 67–73. [CrossRef] [PubMed]
  8. Delemotte L, Klein ML, Tarek M. Molecular dynamics simulations of voltage-gated cation channels: insights on voltage-sensor domain function and modulation. Front Pharmacol 2012 ; 3 : 97. [CrossRef] [PubMed]
  9. Jensen MO, Jogini V, Borhani DW, et al. Mechanism of voltage gating in potassium channels. Science 2012 ; 336 : 229–233. [CrossRef] [PubMed]
  10. Tarek M, Delemotte L. Omega currents in voltage-gated ion channels: what can we learn from uncovering the voltage-sensing mechanism using MD simulations? Acc Chem Res 2013 ; 46 : 2755–2762. [CrossRef] [PubMed]
  11. Amaral C, Carnevale V, Klein ML, Treptow W. Exploring conformational states of the bacterial voltage-gated sodium channel NavAb via molecular dynamics simulations. Proc Natl Acad Sci USA 2012 ; 109 : 21336–21341. [CrossRef]
  12. Delemotte L, Tarek M, Klein ML, et al. Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations. Proc Natl Acad Sci USA 2011; 108 : 6109–6114. [CrossRef]
  13. Moreau A, Gosselin-Badaroudine P, Chahine M. Biophysics, pathophysiology, and pharmacology of ion channel gating pores. Front Pharmacol 2014 ; 5 : 53. [CrossRef] [PubMed]
  14. Delemotte L, Treptow W, Klein ML, Tarek M. Effect of sensor domain mutations on the properties of voltage-gated ion channels: molecular dynamics studies of the potassium channel Kv1.2. Biophys J 2010 ; 99 : L72–L74. [CrossRef] [PubMed]
  15. Khalili-Araghi F, Tajkhorshid E, Roux B, Schulten K. Molecular dynamics investigation of the omega-current in the Kv1.2 voltage sensor domains. Biophys J 2012 ; 102 : 258–267. [CrossRef] [PubMed]
  16. Gosselin-Badaroudine P, Delemotte L, Moreau A, et al. Gating pore currents and the resting state of Nav1.4 voltage sensor domains. Proc Natl Acad Sci USA 2012; 109 : 19250–19255. [CrossRef]
  17. Talbott JH. Periodic paralysis: a clinical syndrome. Medicine (Baltimore) 1941 ; 20 : 85–143. [CrossRef]
  18. Cannon SC. Pathomechanisms in channelopathies of skeletal muscle and brain. Annu Rev Neurosci 2006 ; 29 : 387–415. [CrossRef] [PubMed]
  19. Sung CC, Cheng CJ, Lo YF, et al. Genotype and phenotype analysis of patients with sporadic periodic paralysis. Am J Med Sci 2012 ; 343 : 281–285. [CrossRef] [PubMed]
  20. Jurkat-Rott K, Mitrovic N, Hang C, et al. Voltage-sensor sodium channel mutations cause hypokalemic periodic paralysis type 2 by enhanced inactivation and reduced current. Proc Natl Acad Sci USA 2000 ; 97 : 9549–9554. [CrossRef]
  21. Lapie P, Goudet C, Nargeot J, et al. Electrophysiological properties of the hypokalaemic periodic paralysis mutation (R528H) of the skeletal muscle alpha 1s subunit as expressed in mouse L cells. FEBS Lett 1996 ; 382 : 244–248. [CrossRef] [PubMed]
  22. Morrill JA, Brown RH Jr, Cannon SC. Gating of the L-type Ca channel in human skeletal myotubes: an activation defect caused by the hypokalemic periodic paralysis mutation R528H. J Neurosci 1998 ; 18 : 10320–10334. [PubMed]
  23. Sokolov S, Scheuer T, Catterall WA. Gating pore current in an inherited ion channelopathy. Nature 2007 ; 446 : 76–78. [CrossRef] [PubMed]
  24. Struyk AF, Cannon SC. A Na+ channel mutation linked to hypokalemic periodic paralysis exposes a proton-selective gating pore. J Gen Physiol 2007 ; 130 : 11–20. [CrossRef] [PubMed]
  25. Wu F, Mi W, Hernandez-Ochoa EO, et al. A calcium channel mutant mouse model of hypokalemic periodic paralysis. J Clin Invest 2012 ; 122 : 4580–4591. [CrossRef] [PubMed]
  26. Gosselin-Badaroudine P, Moreau A, Chahine M. Nav 1.5 mutations linked to dilated cardiomyopathy phenotypes: is the gating pore current the missing link? Channels (Austin) 2014 ; 8 : 90–94. [CrossRef] [PubMed]
  27. Beckermann TM, McLeod K, Murday V, et al. Novel SCN5A mutation in amiodarone-responsive multifocal ventricular ectopy-associated cardiomyopathy. Heart Rhythm 2014 ; 11 : 1446–1453. [CrossRef] [PubMed]
  28. Bezzina CR, Rook MB, Groenewegen WA, et al. Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system. Circ Res 2003 ; 92 : 159–168. [CrossRef] [PubMed]
  29. Mann SA, Castro ML, Ohanian M, et al. R222Q SCN5A mutation is associated with reversible ventricular ectopy and dilated cardiomyopathy. J Am Coll Cardiol 2012 ; 60 : 1566–1573. [CrossRef] [PubMed]
  30. Moreau A, Gosselin-Badaroudine P, Delemotte L, et al. Gating pore currents are defects in common with two Nav1.5 mutations in patients with mixed arrhythmias and dilated cardiomyopathy. J Gen Physiol 2015 ; 145 : 93–106. [CrossRef] [PubMed]
  31. Gosselin-Badaroudine P, Keller DI, Huang H, et al. A proton leak current through the cardiac sodium channel is linked to mixed arrhythmia and the dilated cardiomyopathy phenotype. PLoS One 2012 ; 7 : e38331. [CrossRef] [PubMed]
  32. Miceli F, Vargas E, Bezanilla F, Taglialatela M. Gating currents from Kv7 channels carrying neuronal hyperexcitability mutations in the voltage-sensing domain. Biophys J 2012 ; 102 : 1372–1382. [CrossRef] [PubMed]
  33. Jurkat-Rott K, Lerche H, Weber Y, Lehmann-Horn F. Hereditary channelopathies in neurology. Adv Exp Med Biol 2010 ; 686 : 305–334. [CrossRef] [PubMed]
  34. Dedek K, Kunath B, Kananura C, et al. Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proc Natl Acad Sci USA 2001 ; 98 : 12272–12277. [CrossRef]
  35. Wuttke TV, Jurkat-Rott K, Paulus W, et al. Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations. Neurology 2007 ; 69 : 2045–2053. [CrossRef] [PubMed]
  36. Figueroa KP, Minassian NA, Stevanin G, et al. KCNC3: phenotype, mutations, channel biophysics: a study of 260 familial ataxia patients. Hum Mutat 2010 ; 31 : 191–196. [CrossRef] [PubMed]
  37. Campos FV, Chanda B, Roux B, Bezanilla F. Two atomic constraints unambiguously position the S4 segment relative to S1 and S2 segments in the closed state of Shaker K channel. Proc Natl Acad Sci USA 2007 ; 104 : 7904–7909. [CrossRef]
  38. Chahine M, Blanchet J, El Chemaly A, Bois P. Un canal sans pore ? La structure primaire d’un canal perméable aux protons enfin dévoilée. Med Sci (Paris) 2006 ; 22 : 930–932. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.