Chémobiologie
Free Access
Issue
Med Sci (Paris)
Volume 31, Number 5, Mai 2015
Chémobiologie
Page(s) 538 - 545
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153105016
Published online 09 June 2015
  1. Burnett G, Kennedy EP. The enzymatic phosphorylation of proteins. J Biol Chem 1954 ; 211 : 969–980. [PubMed] [Google Scholar]
  2. Guerrier P, Moreau M, Doree M. Hormonal control of meiosis in starfish: stimulation of protein phosphorylation induced by 1-methyladenine. Mol Cell Endocrinol 1977 ; 7 : 137–150. [CrossRef] [PubMed] [Google Scholar]
  3. Neant I, Guerrier P. 6-Dimethylaminopurine blocks starfish oocyte maturation by inhibiting a relevant protein kinase activity. Exp Cell Res 1988 ; 176 : 68–79. [CrossRef] [PubMed] [Google Scholar]
  4. Arion D, Meijer L, Brizuela L, Beach D. Cdc2 is a component of the M phase-specific histone H1 kinase: evidence for identity with MPF. Cell 1988 ; 55 : 371–378. [CrossRef] [PubMed] [Google Scholar]
  5. Azzi L, Meijer L, Ostvold AC, et al. Purification of a 15-kDa cdk4- and cdk5-binding protein. J Biol Chem 1994 ; 269 : 13279–88. [PubMed] [Google Scholar]
  6. Meijer L, Borgne A, Mulner O, et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 1997 ; 243 : 527–536. [CrossRef] [PubMed] [Google Scholar]
  7. Bettayeb K, Oumata N, Echalier A, et al. CR8, a potent and selective, roscovitine-derived inhibitor of cyclin-dependent kinases. Oncogene 2008 ; 27 : 5797–5807. [CrossRef] [PubMed] [Google Scholar]
  8. Bach S, Knockaert M, Reinhardt J, et al. Roscovitine targets, protein kinases and pyridoxal kinase. J Biol Chem 2005 ; 280 : 31208–31219. [CrossRef] [PubMed] [Google Scholar]
  9. Gray N, Detivaud L, Doerig C, Meijer L. ATP-site directed inhibitors of cyclin-dependent kinases. Curr Med Chem 1999 ; 6 : 859–875. [PubMed] [Google Scholar]
  10. Meijer L, Raymond E. Roscovitine and other purines as kinase inhibitors. From starfish oocytes to clinical trials. Acc Chem Res 2003 ; 36 : 417–425. [CrossRef] [PubMed] [Google Scholar]
  11. Cohen P. Protein kinases: the major drug targets of the twenty-first century? Nat Rev Drug Discov 2002 ; 1 : 309–315. [CrossRef] [PubMed] [Google Scholar]
  12. Mettey Y, Gompel M, Thomas V, et al. Aloisines, a new family of CDK/GSK-3 inhibitors. SAR study, crystal structure in complex with CDK2, enzyme selectivity, and cellular effects. J Med Chem 2003 ; 46 : 222–236. [CrossRef] [PubMed] [Google Scholar]
  13. Doerig C, Meijer L, Mottram JC. Protein kinases as drug targets in parasitic protozoa. Trends Parasitol 2002 ; 18 : 366–371. [CrossRef] [PubMed] [Google Scholar]
  14. Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, et al. TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ 2012 ; 19 : 2003–2014. [CrossRef] [PubMed] [Google Scholar]
  15. Meijer L, Thunnissen AM, White AW, et al. Inhibition of cyclin-dependent kinases, GSK-3beta and CK1 by hymenialdisine, a marine sponge constituent. Chem Biol 2000 ; 7 : 51–63. [CrossRef] [PubMed] [Google Scholar]
  16. Corbel C, Haddoub R, Guiffant D, et al. Identification of potential cellular targets of aloisine A by affinity chromatography. Bioorg Med Chem 2009 ; 17 : 5572–5582. [CrossRef] [PubMed] [Google Scholar]
  17. Guiffant D, Tribouillard D, Gug F, et al. Identification of intracellular targets of small molecular weight chemical compounds using affinity chromatography. Biotechnol J 2007 ; 2 : 68–75. [CrossRef] [PubMed] [Google Scholar]
  18. Martins A, Vieira H, Gaspar H, Santos S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drugs 2014 ; 12 : 1066–1101. [CrossRef] [PubMed] [Google Scholar]
  19. Bharate SB, Sawant SD, Singh PP, Vishwakarma RA. Kinase inhibitors of marine origin. Chem Rev 2013 ; 113 : 6761–6815. [CrossRef] [PubMed] [Google Scholar]
  20. Kornprobst JM. lic>Encyclopedia of marine natural products. San Francisco : Wiley Blackwell, 2010 : 1680 p. [Google Scholar]
  21. Paul VJ, Ritson-Williams R, Sharp K. Marine chemical ecology in benthic environments. Nat Prod Rep 2011 ; 28 : 345–387. [CrossRef] [PubMed] [Google Scholar]
  22. Poulson KL, Sieg RD, Kubanek J. Chemical ecology of the marine plankton. Nat Prod Rep 2009 ; 26 : 729–745. [CrossRef] [PubMed] [Google Scholar]
  23. Burgaud G, Meslet-Cladière L, Barbier G, Edgcomb VP. Astonishing fungal diversity in deep-sea hydrothermal ecosystems: an untapped resource of biotechnological potential ? San Francisco : Wiley Blackwell, 2014. [Google Scholar]
  24. Gerwick. H, Roberts MA, Proteau PJ, Chen JL. Screening cultured marine microalgae for anticancer-type activity. J Appl Phycol 1994 ; 6 : 143–149. [CrossRef] [Google Scholar]
  25. Bhatnagar I, Kim SK. Marine antitumor drugs: status, shortfalls and strategies. Mar Drugs 2010 ; 8 : 2702–2720. [CrossRef] [PubMed] [Google Scholar]
  26. Poulsen SA, Davis RA, Keys TG. Screening a natural product-based combinatorial library using FTICR mass spectrometry. Bioorg Med Chem 2006 ; 14 : 510–515. [CrossRef] [PubMed] [Google Scholar]
  27. Vu H, Pham NB, Quinn RJ. Direct screening of natural product extracts using mass spectrometry. J Biomol Screen 2008 ; 13 : 265–275. [CrossRef] [PubMed] [Google Scholar]
  28. Abida H, Ruchaud S, Rios L, et al. Bioprospecting marine plankton. Mar Drugs 2013 ; 11 : 4594–4611. [CrossRef] [PubMed] [Google Scholar]
  29. Kornprobst JM. Médicaments de la mer : un état de la question. Biotendance 2010 ; 10 : 1–25. [Google Scholar]
  30. Prudent R, Soleilhac E, Barette C, et al. Les criblages phénotypiques ou comment faire d’une pierre deux coups. Med Sci (Paris) 2013 ; 29 : 897–905. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  31. Mahuteau-Betzer F. Chimiothèque Nationale : avancées et perspectives. Med Sci (Paris) 2015 ; 31 : 417–422. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  32. Da Silva P, Bendjeddou LZ, Meijer L. Recherche de substances naturelles à activité thérapeutique : George R. Pettit. Med Sci (Paris) 2014 ; 30 : 319–328. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.