Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 5, Mai 2014
Page(s) 558 - 566
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143005020
Publié en ligne 13 juin 2014
  1. Lim WA, Pawson T. Phosphotyrosine signaling: evolving a new cellular communication system. Cell 2010 ; 142 : 661–667. [CrossRef] [PubMed] [Google Scholar]
  2. Pawson T. Protein modules and signalling networks. Nature 1995 ; 373 : 573–580. [CrossRef] [PubMed] [Google Scholar]
  3. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001 ; 411 : 355–365. [CrossRef] [PubMed] [Google Scholar]
  4. Hollande F, Pannequin J, Joubert D. The long road to colorectal cancer therapy: searching for the right signals. Drug Resist Updat 2010 ; 13 : 44–56. [CrossRef] [PubMed] [Google Scholar]
  5. Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med 2005 ; 353 : 172–187. [CrossRef] [PubMed] [Google Scholar]
  6. Weisberg E, Manley PW, Cowan-Jacob SW, et al. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 2007 ; 7 : 345–356. [CrossRef] [PubMed] [Google Scholar]
  7. Hunter T, Sefton BM. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci USA 1980 ; 77 : 1311–1315. [CrossRef] [Google Scholar]
  8. Bromann PA, Korkaya H, Courtneidge SA. The interplay between Src family kinases and receptor tyrosine kinases. Oncogene 2004 ; 23 : 7957–7968. [CrossRef] [PubMed] [Google Scholar]
  9. Irby RB, Yeatman TJ. Role of Src expression and activation in human cancer. Oncogene 2000 ; 19 : 5636–5642. [CrossRef] [PubMed] [Google Scholar]
  10. Sirvent A, Benistant C, Pannequin J, et al. Src family tyrosine kinases-driven colon cancer cell invasion is induced by Csk membrane delocalization. Oncogene 2010 ; 29 : 1303–1315. [CrossRef] [PubMed] [Google Scholar]
  11. Sirvent A, Benistant C, Roche S. Oncogenic signaling by tyrosine kinases of the Src family in advanced colorectal cancer. Am J Cancer Res 2012 ; 2 : 357–371. [PubMed] [Google Scholar]
  12. Wu H, Parsons JT. Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol 1993 ; 120 : 1417–1426. [CrossRef] [PubMed] [Google Scholar]
  13. Thingholm TE, Jensen ON, Larsen MR. Analytical strategies for phosphoproteomics. Proteomics 2009 ; 9 : 1451–1468. [CrossRef] [PubMed] [Google Scholar]
  14. Ong SE, Blagoev B, Kratchmarova I, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002 ; 1 : 376–386. [CrossRef] [PubMed] [Google Scholar]
  15. Emadali A, Gallagher-Gambarelli M. La protéomique quantitative par la méthode SILAC - Technique et perspectives. Med Sci (Paris) 2009 ; 25: 835–842 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. Guo A, Villen J, Kornhauser J, et al. Signaling networks assembled by oncogenic EGFR and c-Met. Proc Natl Acad Sci USA 2008 ; 105 : 692–697. [CrossRef] [Google Scholar]
  17. Liang X, Hajivandi M, Veach D, et al. Quantification of change in phosphorylation of BCR-ABL kinase and its substrates in response to Imatinib treatment in human chronic myelogenous leukemia cells. Proteomics 2006 ; 6 : 4554–4564. [CrossRef] [PubMed] [Google Scholar]
  18. Leroy C, Fialin C, Sirvent A, et al. Quantitative phosphoproteomics reveals a cluster of tyrosine kinases that mediates SRC invasive activity in advanced colon carcinoma cells. Cancer Res 2009 ; 69 : 2279–2286. [CrossRef] [PubMed] [Google Scholar]
  19. Rush J, Moritz A, Lee KA, et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 2005 ; 23 : 94–101. [CrossRef] [PubMed] [Google Scholar]
  20. Kruger M, Moser M, Ussar S, et al. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 2008 ; 134 : 353–364. [CrossRef] [PubMed] [Google Scholar]
  21. Sirvent A, Vigy O, Orsetti B, et al. Analysis of SRC oncogenic signaling in colorectal cancer by stable isotope labeling with heavy amino acids in mouse xenografts. Mol Cell Proteomics 2012 ; 11 : 1937–1950. [CrossRef] [PubMed] [Google Scholar]
  22. Seykora JT, Mei L, Dotto GP, Stein PL. Srcasm: a novel Src activating and signaling molecule. J Biol Chem 2002 ; 277 : 2812–2822. [CrossRef] [PubMed] [Google Scholar]
  23. Franco M, Furstoss O, Simon V, et al. The adaptor protein Tom1L1 is a negative regulator of Src mitogenic signaling induced by growth factors. Mol Cell Biol 2006 ; 26 : 1932–1947. [CrossRef] [PubMed] [Google Scholar]
  24. Geiger T, Cox J, Ostasiewicz P, et al. Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 2010 ; 7 : 383–385. [CrossRef] [PubMed] [Google Scholar]
  25. Ross PL, Huang YN, Marchese JN, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004 ; 3 : 1154–1169. [CrossRef] [PubMed] [Google Scholar]
  26. Hsu JL, Huang SY, Chow NH, Chen SH. Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 2003 ; 75 : 6843–6852. [CrossRef] [PubMed] [Google Scholar]
  27. Engholm-Keller K, Larsen MR. Technologies and challenges in large-scale phosphoproteomics. Proteomics 2013 ; 13 : 910–931. [CrossRef] [PubMed] [Google Scholar]
  28. Kim W, Bennett EJ, Huttlin EL, et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 2011 ; 44 : 325–340. [CrossRef] [PubMed] [Google Scholar]
  29. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 2008 ; 26 : 1367–1372. [CrossRef] [PubMed] [Google Scholar]
  30. Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 2005 ; 1 : 252–262. [CrossRef] [PubMed] [Google Scholar]
  31. Ashton-Beaucage D, Therrien M. La signalisation RTK/RAS/ERK élargie. Med Sci (Paris) 2010 ; 26 : 1067–1073. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  32. Fridman WH, Sautès-Fridman C. Le microenvironnement tumoral : matrice nourricière, champ de bataille et cible thérapeutique des cancers. Med Sci (Paris) 2014 ; 30 : 359–365. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  33. Provot S. Contrôle de la croissance et de la dissémination tumorales par le microenvironnement : certitudes et hypothèses émergentes. Med Sci (Paris) 2014 ; 30 : 366–371. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.