Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 4, Avril 2014
Page(s) 445 - 451
Section Microenvironnements tumoraux : conflictuels et complémentaires
DOI https://doi.org/10.1051/medsci/20143004021
Publié en ligne 5 mai 2014
  1. Fridman R, Giaccone G, Kanemoto T, et al. Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc Natl Acad Sci USA 1990 ; 87 : 6698–6702. [CrossRef] [Google Scholar]
  2. Damiano JS, Cress AE, Hazlehurst LA, et al. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 1999 ; 93 : 1658–1667. [PubMed] [Google Scholar]
  3. Park CC, Zhang HJ, Yao ES, et al. Beta1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts. Cancer Res 2008 ; 68 : 4398–4405. [CrossRef] [PubMed] [Google Scholar]
  4. Hsieh YT, Gang EJ, Geng H, et al. Integrin alpha4 blockade sensitizes drug resistant pre-B acute lymphoblastic leukemia to chemotherapy. Blood 2013 ; 121 : 1814–1818. [CrossRef] [PubMed] [Google Scholar]
  5. Hazlehurst LA, Damiano JS, Buyuksal I, et al. Adhesion to fibronectin via beta1 integrins regulates p27kip1 levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene 2000 ; 19 : 4319–4327. [CrossRef] [PubMed] [Google Scholar]
  6. Shain KH, Landowski TH, Dalton WS. Adhesion-mediated intracellular redistribution of c-Fas-associated death domain-like IL-1-converting enzyme-like inhibitory protein-long confers resistance to CD95-induced apoptosis in hematopoietic cancer cell lines. J Immunol 2002 ; 168 : 2544–2553. [CrossRef] [PubMed] [Google Scholar]
  7. Mishra S, Zhang B, Cunnick JM, et al. Resistance to imatinib of bcr/abl p190 lymphoblastic leukemia cells. Cancer Res 2006 ; 66 : 5387–5393. [CrossRef] [PubMed] [Google Scholar]
  8. Mitsiades CS, Mitsiades NS, Munshi NC, et al. The role of the bone microenvironment in the pathophysiology and therapeutic management of multiple myeloma: interplay of growth factors, their receptors and stromal interactions. Eur J Cancer 2006 ; 42 : 1564–1573. [CrossRef] [PubMed] [Google Scholar]
  9. Shain KH, Yarde DN, Meads MB, et al. Beta1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Res 2009 ; 69 : 1009–1015. [CrossRef] [PubMed] [Google Scholar]
  10. Chao Y, Wu Q, Shepard C, Wells A. Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clin Exp Metastasis 2012 ; 29 : 39–50. [CrossRef] [PubMed] [Google Scholar]
  11. Parmar A, Marz S, Rushton S, et al. Stromal niche cells protect early leukemic FLT3-ITD+ progenitor cells against first-generation FLT3 tyrosine kinase inhibitors. Cancer Res 2011 ; 71 : 4696–4706. [CrossRef] [PubMed] [Google Scholar]
  12. Sohara Y, Shimada H, Minkin C, et al. Bone marrow mesenchymal stem cells provide an alternate pathway of osteoclast activation and bone destruction by cancer cells. Cancer Res 2005 ; 65 : 1129–1135. [CrossRef] [PubMed] [Google Scholar]
  13. Ara T, Song L, Shimada H, et al. Interleukin-6 in the bone marrow microenvironment promotes the growth and survival of neuroblastoma cells. Cancer Res 2009 ; 69 : 329–337. [CrossRef] [PubMed] [Google Scholar]
  14. Perez LE, Parquet N, Shain K, et al. Bone marrow stroma confers resistance to Apo2 ligand/TRAIL in multiple myeloma in part by regulating c-FLIP. J Immunol 2008 ; 180 : 1545–1555. [CrossRef] [PubMed] [Google Scholar]
  15. Ara T, Nakata R, Sheard MA, et al. Critical role of STAT3 in IL-6-mediated drug resistance in human neuroblastoma. Cancer Res 2013 ; 73 : 3852–3864. [CrossRef] [PubMed] [Google Scholar]
  16. Duda DG, Kozin SV, Kirkpatrick ND, et al. CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies?. Clin Cancer Res 2011 ; 17 : 2074–2080. [CrossRef] [PubMed] [Google Scholar]
  17. Hattori K, Heissig B, Rafii S. The regulation of hematopoietic stem cell and progenitor mobilization by chemokine SDF-1. Leuk Lymphoma 2003 ; 44 : 575–582. [CrossRef] [PubMed] [Google Scholar]
  18. Shiozawa Y, Pedersen EA, Havens AM, et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 2011 ; 121 : 1298–1312. [CrossRef] [PubMed] [Google Scholar]
  19. Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 2009 ; 9 : 665–674. [CrossRef] [PubMed] [Google Scholar]
  20. Weekes CD, Song D, Arcaroli J, et al. Stromal cell-derived factor 1alpha mediates resistance to mTOR-directed therapy in pancreatic cancer. Neoplasia 2012 ; 14 : 690–701. [PubMed] [Google Scholar]
  21. Hartmann TN, Burger JA, Glodek A, et al. CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene 2005 ; 24 : 4462–4471. [CrossRef] [PubMed] [Google Scholar]
  22. Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 2010 ; 29 : 4741–4751. [CrossRef] [PubMed] [Google Scholar]
  23. Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 2011 ; 10 : 417–427. [CrossRef] [PubMed] [Google Scholar]
  24. Bisping G, Leo R, Wenning D, et al. Paracrine interactions of basic fibroblast growth factor and interleukin-6 in multiple myeloma. Blood 2003 ; 101 : 2775–2783. [CrossRef] [PubMed] [Google Scholar]
  25. Nefedova Y, Landowski TH, Dalton WS. Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia 2003 ; 17 : 1175–1182. [CrossRef] [PubMed] [Google Scholar]
  26. Silverman AM, Nakata R, Shimada H, et al. A galectin-3-dependent pathway upregulates interleukin-6 in the microenvironment of human neuroblastoma. Cancer Res 2012 ; 72 : 2228–2238. [CrossRef] [PubMed] [Google Scholar]
  27. Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002 ; 2 : 569–579. [PubMed] [Google Scholar]
  28. Andre F, Schartz NE, Chaput N, et al. Tumor-derived exosomes: a new source of tumor rejection antigens. Vaccine 2002 ; 20 suppl 4 : A28–A31. [CrossRef] [PubMed] [Google Scholar]
  29. Coussens LM, Zitvogel L, Palucka AK. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 2013 ; 339 : 286–291. [CrossRef] [PubMed] [Google Scholar]
  30. Peinado H, Lavotshkin S, Lyden D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 2011 ; 21 : 139–146. [CrossRef] [PubMed] [Google Scholar]
  31. Fabbri M, Paone A, Calore F, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA 2012 ; 109 : E2110–E2116. [CrossRef] [Google Scholar]
  32. Park D, Sykes DB, Scadden DT. The hematopoietic stem cell niche. Front Biosci 2012 ; 17 : 30–39. [CrossRef] [Google Scholar]
  33. Fidler IJ. Seed and soil revisited: contribution of the organ microenvironment to cancer metastasis. Surg Oncol Clin N Am 2001 ; 10 : 257–269. [PubMed] [Google Scholar]
  34. Bidard FC, Poupon MF. Biologie du processus métastatique. Med Sci (Paris) 2012 ; 28 : 89–95. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  35. McAllister SS, Weinberg RA. Tumor-host interactions: a far-reaching relationship. J Clin Oncol 2010 ; 28 : 4022–4028. [CrossRef] [PubMed] [Google Scholar]
  36. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012 ; 21 : 309–322. [CrossRef] [PubMed] [Google Scholar]
  37. Denardo DG, Brennan DJ, Rexhepaj E, et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 2011 ; 1 : 54–67. [CrossRef] [PubMed] [Google Scholar]
  38. Multhoff G, Radons J., Radiation inflammation, immune responses in cancer. Front Oncol 2012 ; 2 : 58. [PubMed] [Google Scholar]
  39. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005 ; 438 : 820–827. [CrossRef] [PubMed] [Google Scholar]
  40. Ferrara N. From the discovery of vascular endothelial growth factor to the introduction of avastin in clinical trials: an interview with Napoleone Ferrara by Domenico Ribatti. Int J Dev Biol 2011 ; 55 : 383–388. [CrossRef] [PubMed] [Google Scholar]
  41. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008 ; 8 : 592–603. [CrossRef] [PubMed] [Google Scholar]
  42. Nabors LB, Mikkelsen T, Hegi ME, et al. A safety run-in and randomized phase 2 study of cilengitide combined with chemoradiation for newly diagnosed glioblastoma (NABTT 0306). Cancer 2012 ; 118 : 5601–5607. [CrossRef] [PubMed] [Google Scholar]
  43. Welschinger R, Liedtke F, Basnett J, et al. Plerixafor (AMD3100) induces prolonged mobilization of acute lymphoblastic leukemia cells and increases the proportion of cycling cells in the blood in mice. Exp Hematol 2013 ; 41 : 293–302. [CrossRef] [PubMed] [Google Scholar]
  44. Agarwal A, Fleischman AG, Petersen CL, et al. Effects of plerixafor in combination with BCR-ABL kinase inhibition in a murine model of CML. Blood 2012 ; 120 : 2658–2668. [CrossRef] [PubMed] [Google Scholar]
  45. Chomel JC, Aggoune D, Sorel N, Turhan AG. Leucémie myéloïde chronique : un modèle de dialogue entre la cellule souche leucémique et la niche hématopoïétique. Med Sci (Paris) 2014 ; 30 : 452–461. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Fridman WH, Sautès-Fridman C. Le microenvironnement tumoral : matrice nourricière, champ de bataille et cible thérapeutique des cancers. Med Sci (Paris) 2014 ; 30 : 359–365. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  47. Provot S. Contrôle de la croissance et de la dissémination tumorales par le microenvironnement : certitudes et hypothèses émergentes. Med Sci (Paris) 2014 ; 30 : 366–371. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. Fellouse FA. Les exosomes du stroma permettent au cellules cancéreuses de s’auto-activer. Med Sci (Paris) 2014 ; 30 : 405–407. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Bensimon J. Le switch angiogénique ou comment réveiller les cellules tumorales dormantes. Med Sci (Paris) 2012 ; 28 : 1069–1071. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Hubert S, Abastado JP. Les étapes précoces du processus métastatique. Med Sci (Paris) 2014 ; 30 : 378–384. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.