Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 3, Mars 2014
Page(s) 266 - 273
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143003014
Publié en ligne 31 mars 2014
  1. Pellestor F, Anahory T, Lefort G, et al. Complex chromosomal rearrangements: origin and meiotic behavior. Hum Reprod Update 2011 ; 17 : 476–494. [CrossRef] [PubMed] [Google Scholar]
  2. Madan K. What is a complex chromosome rearrangement ? Am J Med Genet 2013 ; 161 : 1181–1184. [CrossRef] [Google Scholar]
  3. Gatinois V, Puechberty J, Lefort G, et al. Les remaniements chromosomiques complexes : un paradigme pour l’étude de l’instabilité chromosomique. Med Sci (Paris) 2013 ; 30 : 55–63. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Reynaud C, Billaud M. La théorie de l’équilibre ponctué. Med Sci (Paris) 2011 ; 27 : 921–944. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Stephens PJ, Greenman CD, Fu B, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011 ; 144 : 27–40. [CrossRef] [PubMed] [Google Scholar]
  6. Kloosterman WP, Hoogstraat M, Paling O, et al. Chromothripsis is a common mechanism driving genomic rearrangements in primary, metastatic colorectal cancer. Genome Biol 2011 ; 12 : R103. [CrossRef] [PubMed] [Google Scholar]
  7. Teles Alves I, Hiltemann S, Hartjes T, et al. Gene fusions by chromothripsis of chromosome 5q in the VCaP prostate cancer cell line. Hum Genet 2013 ; 132 : 709–713. [CrossRef] [PubMed] [Google Scholar]
  8. Magrangeas F, Avet-Loiseau H, Munshi NC, Minvielle S. Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients. Blood 2011 ; 118 : 675–678. [CrossRef] [PubMed] [Google Scholar]
  9. Molenaar JJ, Koster J, Zwijnenburg DA, et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 2012 ; 483 : 589–593. [CrossRef] [PubMed] [Google Scholar]
  10. Nagel S, Meyer C, Quentmeier H, et al. Chromothripsis in Hodgkin lymphoma. Genes Chrom Cancer 2013 ; 52 : 741–747. [CrossRef] [Google Scholar]
  11. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature 2009 ; 458 : 719–724. [CrossRef] [PubMed] [Google Scholar]
  12. Reynaud C, Billaud M., Quand la chromothripsis devient germinale. Med Sci (Paris) 2011 ; 27 : 1083. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. Kloosterman WP, Guryev V, van Roosmalen M, et al. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum Mol Genet 2011 ; 20 : 1916–1924. [CrossRef] [PubMed] [Google Scholar]
  14. Liu P, Erez A, Sreenath Nagamani SC, et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 2011 ; 146 : 889–903. [CrossRef] [PubMed] [Google Scholar]
  15. Kloosterman WP, Tavakoli-Yaraki M, van Roosmalen M, et al. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep 2012 ; 1 : 648–655. [CrossRef] [PubMed] [Google Scholar]
  16. Chiang C, Jacobsen JC, Ernst C, et al. Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet 2012 ; 44 : 390–398. [CrossRef] [PubMed] [Google Scholar]
  17. Korbel JO, Campbell PJ. Criteria for inference of chromothripsis in cancer genomes. Cell 2013 ; 152 : 1226–1236. [CrossRef] [PubMed] [Google Scholar]
  18. Okayasu R. Repair of DNA damage induced by accelerated heavy ions. Int J Cancer 2012 ; 130 : 991–1000. [CrossRef] [PubMed] [Google Scholar]
  19. Stevens JB, Abdallah BY, Regan SM, et al. Comparison of mitotic cell death by chromosome fragmentation to premature chromosome condensation. Mol Cytogenet 2010 ; 3 : 20–31. [CrossRef] [PubMed] [Google Scholar]
  20. Luo Y, Hermetz KE, Jackson JM, et al. Diverse mutational mechanisms cause pathogenic subtelomeric rearrangements. Hum Mol Genet 2011 ; 20 : 3769–3778. [CrossRef] [PubMed] [Google Scholar]
  21. Tubio JM, Estivill X. When catastrophe strikes a cell. Nature 2011 ; 470 : 476–477. [CrossRef] [PubMed] [Google Scholar]
  22. Tang HL, Tang HM, Mak KH, et al. Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Mol Biol Cell 2012 ; 23 : 2240–2252. [CrossRef] [PubMed] [Google Scholar]
  23. Jones MJK, Jallepalli PV. Chromothripsis: chromosomes in crisis. Dev Cell 2012 ; 23 : 908–917. [CrossRef] [PubMed] [Google Scholar]
  24. Lukas C, Savic V, Bekker-Jensen S, et al. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol 2011 ; 13 : 243–253. [CrossRef] [PubMed] [Google Scholar]
  25. Rausch T, Jones DTW, Zapatka M, et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 2012 ; 148 : 59–71. [CrossRef] [PubMed] [Google Scholar]
  26. Meyerson M, Pellman D. Cancer genomes evolve by pulverizing single chromosomes. Cell 2011 ; 144 : 9–10. [CrossRef] [PubMed] [Google Scholar]
  27. Lee JA, Carvalho CM, Lupski JR. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 2007 ; 131 : 1235–1247. [CrossRef] [PubMed] [Google Scholar]
  28. Green BM, Finn KJ, Li JJ. Loss of DNA replication control is a potent inducer of gene amplification. Science 2010 ; 329 : 943–946. [CrossRef] [PubMed] [Google Scholar]
  29. Kloosterman WP, Cuppen E. Chromothripsis in congenital disorders and cancer: similarities and differences. Curr Opin Cell Biol 2013 ; 25 : 1–8. [CrossRef] [PubMed] [Google Scholar]
  30. Thomas NS, Durkie M, Van Zyl B, et al. Parental and chromosomal origin of unbalanced de novo structural chromosome abnormalities in man. Hum Genet 2006 ; 119 : 444–450. [CrossRef] [PubMed] [Google Scholar]
  31. Leduc F, Nkoma GB, Boissonneault G. Spermiogenesis and DNA repair; a possible etiology of human infertility and genetic disorders. Syst Biol Reprod Med 2008 ; 54 : 3–10. [CrossRef] [PubMed] [Google Scholar]
  32. Vanneste E, Voet T, Le Caigec C, et al. Chromosome instability is common in human cleavage-stage embryos. Nat Med 2009 ; 15 : 577–583. [CrossRef] [PubMed] [Google Scholar]
  33. Kurahashi H, Bolor H, Kato T, et al. Recent advance in our understanding of the molecular nature of chromosomal abnormalities. J Hum Genet 2009 ; 54 : 253–260. [CrossRef] [PubMed] [Google Scholar]
  34. Mantzouratou A, Delhanty JD. Aneuploidy in the human cleavage stage embryo. Cytogenet Genome Res 2011 ; 133 : 141–148. [CrossRef] [PubMed] [Google Scholar]
  35. Gudjonsson T, Altmeyer M, Savic V, et al. TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes. Cell 2012 ; 150 : 697–709. [CrossRef] [PubMed] [Google Scholar]
  36. Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet 2008 ; 42 : 301–334. [CrossRef] [PubMed] [Google Scholar]
  37. Yatsenko SA, Hixson P, Roney EK, et al. Human subtelomeric copy number gains suggest a DNA replication mechanism for formation: beyond breakage-fusion-bridge for telomere stabilization. Hum Genet 2012 ; 131 : 1895–1910. [CrossRef] [PubMed] [Google Scholar]
  38. Liu P, Lacaria M, Zhang F, et al. Frequency of nonallelic homologous recombination is correlated with length of homology: evidence that ectopic synapsis precedes ectopic crossing-over. Am J Hum Genet 2011 ; 89 : 580–588. [CrossRef] [PubMed] [Google Scholar]
  39. George CM, Alani E. Multiple cellular mechanisms prevent chromosomal rearrangements involving repetitive DNA. Crit Rev Bioch Mol Biol 2012 ; 47 : 297–313. [CrossRef] [Google Scholar]
  40. Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science 2008 ; 319 : 1352–1355. [CrossRef] [PubMed] [Google Scholar]
  41. Crasta K, Ganem NJ, Dagher R, et al. DNA break and chromosome pulverization from errors in mitosis. Nature 2012 ; 482 : 53–58. [CrossRef] [PubMed] [Google Scholar]
  42. Holland AJ, Cleveland DW. Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat Med 2012 ; 18 : 1630–1638. [CrossRef] [PubMed] [Google Scholar]
  43. Zhang Y, Patton McCord R, Ho YJ, et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 2012 ; 148 : 908–921. [CrossRef] [PubMed] [Google Scholar]
  44. Howarth KD, Pole JC, Beavis JC, et al. Large duplications at reciprocal translocation breakpoints that might be the counterpart of large deletions and could arise from stalled replication bubbles. Genome Res 2011 ; 21 : 525–534. [CrossRef] [PubMed] [Google Scholar]
  45. Maher CA, Wilson RK. Chromothripsis and human disease: piecing together the shattering process. Cell 2012 ; 148 : 29–32. [CrossRef] [PubMed] [Google Scholar]
  46. Eldredge N, Gould SJ. Punctuated equilibria: an alternative to phyletic gradualism. Models Paleobiol 1972 ; 82 : 82–115. [Google Scholar]
  47. Liu P, Carvalho CMB, Hastings PJ, Lupski JR. Mechanisms for recurrent and complex human genomic rearrangements. Curr Opin Genet Dev 2012 ; 22 : 211–220. [CrossRef] [PubMed] [Google Scholar]
  48. Righolt C, Mai S. Shattered and stitched chromosomes-chromothripsis and chromoanasynthesis-manifestations of a new chromosome crisis ? Genes Chrom Cancer 2012 ; 51 : 975–981. [CrossRef] [Google Scholar]
  49. Greenman CD, Pleasance ED, Newman S, et al. Estimation of rearrangement phylogeny for cancer genomes. Genome Res 2012 ; 22 : 346–361. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.