Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 3, Mars 2014
Page(s) 259 - 265
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143003013
Publié en ligne 31 mars 2014
  1. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010 ; 464 : 59–65. [CrossRef] [PubMed]
  2. Consortium IHGS. Finishing the euchromatic sequence of the human genome. Nature 2004 ; 431 : 931–945. [CrossRef] [PubMed]
  3. Gronlund MM, Lehtonen OP, Eerola E, Kero P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr 1999 ; 28 : 19–25. [CrossRef] [PubMed]
  4. Costello EK, Lauber CL, Hamady M, et al. Bacterial community variation in human body habitats across space and time. Science 2009 ; 326 : 1694–1697. [CrossRef] [PubMed]
  5. Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol 2012 ; 10 : 323–335. [PubMed]
  6. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science 2005 ; 308 : 1635–1638. [CrossRef] [PubMed]
  7. Structure, function and diversity of the healthy human microbiome. Nature 2012 ; 486 : 207–214. [CrossRef] [PubMed]
  8. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006 ; 124 : 837–848. [CrossRef] [PubMed]
  9. Kurokawa K, Itoh T, Kuwahara T, et al. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 2007 ; 14 : 169–181. [CrossRef] [PubMed]
  10. Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol 2009 ; 587 : 4153–4158. [CrossRef] [PubMed]
  11. McNeil NI. The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 1984 ; 39 : 338–342. [PubMed]
  12. Cerf-Bensussan N, Gaboriau-Routhiau V. The immune system and the gut microbiota: friends or foes?. Nat Rev Immunol 2010 ; 10 : 735–744. [CrossRef] [PubMed]
  13. Conroy ME, Shi HN, Walker WA. The long-term health effects of neonatal microbial flora. Curr Opin Allergy Clin Immunol 2009 ; 9 : 197–201. [CrossRef] [PubMed]
  14. Guarner F, Malagelada JR. Gut flora in health and disease. Lancet 2003 ; 361 : 512–519. [CrossRef] [PubMed]
  15. Cantarel BL, Lombard V, Henrissat B. Complex carbohydrate utilization by the healthy human microbiome. PLoS One 2012 ; 7 : e28742. [CrossRef] [PubMed]
  16. Cantarel BL, Coutinho PM, Rancurel C, et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 2009 ; 37 : D233–D238. [CrossRef] [PubMed]
  17. El Kaoutari A, Armougom F, Gordon JI, et al. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 2013 ; 11 : 497–504. [CrossRef] [PubMed]
  18. DeVries JW. On defining dietary fibre. Proc Nutr Soc 2003 ; 62 : 37–43. [CrossRef] [PubMed]
  19. Gallant DJ, Bouchet B, Buleon A, Perez S. Physical characteristics of starch granules and susceptibility to enzymatic degradation. Eur J Clin Nutr 1992 ; 46 Suppl 2 : S3–16.
  20. Esko JD, Kimata K, Lindahl U. Proteoglycans and sulfated glycosaminoglycans, 2nd ed. Cold Spring Harbor (NY) : Cold Spring Harbor Laboratory Press, 2009.
  21. Martens EC, Lowe EC, Chiang H, et al. Recognition, degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol 2011 ; 9 : e1001221. [CrossRef] [PubMed]
  22. Donohoe DR, Garge N, Zhang X, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 2011 ; 13 : 517–526. [CrossRef] [PubMed]
  23. Vanhoutvin SA, Troost FJ, Hamer HM, et al. Butyrate-induced transcriptional changes in human colonic mucosa. PLoS One 2009 ; 4 : e6759. [CrossRef] [PubMed]
  24. Inan MS, Rasoulpour RJ, Yin L, et al. The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology 2000 ; 118 : 724–734. [CrossRef] [PubMed]
  25. Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009 ; 58 : 1509–1517. [CrossRef] [PubMed]
  26. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006 ; 444 : 1022–1023. [CrossRef] [PubMed]
  27. Zupancic ML, Cantarel BL, Liu Z, et al. Analysis of the gut microbiota in the old order Amish, its relation to the metabolic syndrome. PLoS One 2012 ; 7 : e43052. [CrossRef] [PubMed]
  28. Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 2010 ; 18 : 190–195. [CrossRef] [PubMed]
  29. Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 2013 ; 110 : 9066–9071. [CrossRef]
  30. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006 ; 444 : 1027–1031. [CrossRef] [PubMed]
  31. Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013 ; 341 : 1241214. [CrossRef] [PubMed]
  32. Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 2006 ; 55 : 205–211. [CrossRef] [PubMed]
  33. Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 2008 ; 105 : 16731–16736. [CrossRef]
  34. Hansen R, Russell RK, Reiff C, et al. Microbiota of de-novo pediatric IBD: increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn’s but not in ulcerative colitis. Am J Gastroenterol 2012 ; 107 : 1913–1922. [CrossRef] [PubMed]
  35. Jia W, Whitehead RN, Griffiths L, et al. Is the abundance of Faecalibacterium prausnitzii relevant to Crohn’s disease? FEMS Microbiol Lett 2010 ; 310 : 138–144. [CrossRef] [PubMed]
  36. Kassinen A, Krogius-Kurikka L, Makivuokko H, et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 2007 ; 133 : 24–33. [CrossRef] [PubMed]
  37. Sjogren YM, Jenmalm MC, Bottcher MF, et al. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin Exp Allergy 2009 ; 39 : 518–526. [CrossRef] [PubMed]
  38. Parracho HM, Bingham MO, Gibson GR, McCartney AL. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 2005 ; 54 : 987–991. [CrossRef] [PubMed]
  39. Meyer D, Stasse-Wolthuis M. The bifidogenic effect of inulin and oligofructose and its consequences for gut health. Eur J Clin Nutr 2009 ; 63 : 1277–1289. [CrossRef] [PubMed]
  40. Scott KP, Martin JC, Chassard C, et al. Substrate-driven gene expression in Roseburia inulinivorans: importance of inducible enzymes in the utilization of inulin, starch. Proc Natl Acad Sci USA 2011 ; 108 : suppl 1 4672–4679. [CrossRef]
  41. McNulty NP, Yatsunenko T, Hsiao A, et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med 2011 ; 3 : 106ra. [CrossRef]
  42. Borody TJ, Warren EF, Leis S, et al. Treatment of ulcerative colitis using fecal bacteriotherapy. J Clin Gastroenterol 2003 ; 37 : 42–47. [CrossRef] [PubMed]
  43. Bernardo P, Albina E, Eloit M, Roumagnac P. Métagénomique virale et pathologie. Med Sci (Paris) 2013 ; 21 : 501–508. [CrossRef] [EDP Sciences] [PubMed]
  44. Burcelin R, Chabo C, Blasco-Baque V, et al. Le microbiote intestinal à l’origine de nouvelles perspectives thérapeutiques pour les maladies métaboliques ? Med Sci (Paris) 2013 ; 29 : 800–806. [CrossRef] [EDP Sciences] [PubMed]
  45. Korneychuk N. Les cellules lymphoïdes innées contrôlent la réponse adaptative aux bactéries commensales intestinales. Med Sci (Paris) 2014 ; 30 : 253–257. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.