Free Access
Issue
Med Sci (Paris)
Volume 28, Number 12, Décembre 2012
Page(s) 1103 - 1109
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20122812021
Published online 21 December 2012
  1. Laflamme MA, Murry CE. Heart regeneration. Nature ; 473 : 326–335. [Google Scholar]
  2. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science 2002 ; 298 : 2188–2190. [CrossRef] [PubMed] [Google Scholar]
  3. Lepilina A, Coon AN, Kikuchi K, et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 2006 ; 127 : 607–619. [CrossRef] [PubMed] [Google Scholar]
  4. Ausoni S, Sartore S. From fish to amphibians to mammals: in search of novel strategies to optimize cardiac regeneration. J Cell Biol 2009 ; 184 : 357–364. [CrossRef] [PubMed] [Google Scholar]
  5. Jopling C, Sleep E, Raya M, et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 2010 ; 464 : 606–609. [CrossRef] [PubMed] [Google Scholar]
  6. Sleep E, Boue S, Jopling C, et al. Transcriptomics approach to investigate zebrafish heart regeneration. J Cardiovasc Med (Hagerstown) 2010 ; 11 : 369–380. [CrossRef] [PubMed] [Google Scholar]
  7. Kikuchi K, Holdway JE, Werdich AA, et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 2010 ; 464 : 601–605. [CrossRef] [PubMed] [Google Scholar]
  8. Hsieh PC, Segers VF, Davis ME, et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 2007 ; 13 : 970–974. [CrossRef] [PubMed] [Google Scholar]
  9. Drenckhahn JD, Schwarz QP, Gray S, et al. Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development. Dev Cell 2008 ; 15 : 521–533. [CrossRef] [PubMed] [Google Scholar]
  10. Porrello ER, Mahmoud AI, Simpson E, et al. Transient regenerative potential of the neonatal mouse heart. Science 2011 ; 331 : 1078–1080. [CrossRef] [PubMed] [Google Scholar]
  11. Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science 2009 ; 324 : 98–102. [CrossRef] [PubMed] [Google Scholar]
  12. Kajstura J, Urbanek K, Perl S, et al. Cardiomyogenesis in the adult human heart. Circ Res 2010 ; 107 : 305–315. [CrossRef] [PubMed] [Google Scholar]
  13. Bersell K, Arab S, Haring B, Kuhn B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 2009 ; 138 : 257–270. [CrossRef] [PubMed] [Google Scholar]
  14. Engel FB, Hsieh PC, Lee RT, Keating MT. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci USA 2006 ; 103 : 15546–15551. [CrossRef] [Google Scholar]
  15. Kuhn B, del Monte F, Hajjar RJ, et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 2007 ; 13 : 962–969. [CrossRef] [PubMed] [Google Scholar]
  16. Gui C, Zhu L, Hu M, et al. Neuregulin-1/ErbB signaling is impaired in the rat model of diabetic cardiomyopathy. Cardiovasc Pathol 2012 ; 21 : 414–420. [CrossRef] [PubMed] [Google Scholar]
  17. Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 1996 ; 28 : 1737–1746. [CrossRef] [PubMed] [Google Scholar]
  18. Camelliti P, Borg TK, Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 2005 ; 65 : 40–51. [CrossRef] [PubMed] [Google Scholar]
  19. Piquereau J, Novotova M, Fortin D, et al. Postnatal development of mouse heart: formation of energetic microdomains. J Physiol 2010 ; 588 : 2443–2454. [CrossRef] [PubMed] [Google Scholar]
  20. Peters NS, Severs NJ, Rothery SM, et al. Spatiotemporal relation between gap junctions and fascia adherens junctions during postnatal development of human ventricular myocardium. Circulation 1994 ; 90 : 713–725. [CrossRef] [PubMed] [Google Scholar]
  21. Swynghedauw B. Are adult cardiocytes still able to proliferate?. Arch Mal Cœur Vaiss 2003 ; 96 : 1225–1230. [Google Scholar]
  22. Olivetti G, Cigola E, Maestri R, et al. Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J Mol Cell Cardiol 1996 ; 28 : 1463–1477. [CrossRef] [PubMed] [Google Scholar]
  23. Anversa P, Kajstura J. Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ Res 1998 ; 83 : 1–14. [CrossRef] [PubMed] [Google Scholar]
  24. Ahuja P, Sdek P, MacLellan WR. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 2007 ; 87 : 521–544. [Google Scholar]
  25. Poolman RA, Brooks G. Expressions and activities of cell cycle regulatory molecules during the transition from myocyte hyperplasia to hypertrophy. J Mol Cell Cardiol 1998 ; 30 : 2121–2135. [CrossRef] [PubMed] [Google Scholar]
  26. Matz DG, Oberpriller JO, Oberpriller JC. Comparison of mitosis in binucleated and mononucleated new cardiac myocytes. Anat Rec 1998 ; 251 : 245–255. [CrossRef] [PubMed] [Google Scholar]
  27. Poolman RA, Gilchrist R, Brooks G. Cell cycle profiles and expressions of p21CIP1 AND P27KIP1 during myocyte development. Int J Cardiol 1998 ; 67 : 133–142. [CrossRef] [PubMed] [Google Scholar]
  28. Campa VM, Gutierrez-Lanza R, Cerignoli F, et al. Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. J Cell Biol 2008 ; 183 : 129–141. [CrossRef] [PubMed] [Google Scholar]
  29. Porrello ER, Johnson BA, Aurora AB, et al. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res 2011 ; 109 : 670–679. [CrossRef] [PubMed] [Google Scholar]
  30. Engel FB, Schebesta M, Keating MT. Anillin localization defect in cardiomyocyte binucleation. J Mol Cell Cardiol 2006 ; 41 : 601–612. [CrossRef] [PubMed] [Google Scholar]
  31. Norris RA, Moreno-Rodriguez R, Hoffman S, Markwald RR. The many facets of the matricelluar protein periostin during cardiac development, remodeling, and pathophysiology. J Cell Commun Signal 2009 ; 3 : 275–286. [CrossRef] [PubMed] [Google Scholar]
  32. Smith TK, Bader DM. Signals from both sides: control of cardiac development by the endocardium and epicardium. Semin Cell Dev Biol 2007 ; 18 : 84–89. [CrossRef] [PubMed] [Google Scholar]
  33. Ieda M, Tsuchihashi T, Ivey KN, et al. Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 2009 ; 16 : 233–244. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.