Free Access
Med Sci (Paris)
Volume 28, Number 12, Décembre 2012
Page(s) 1111 - 1115
Section M/S Revues
Published online 21 December 2012
  1. Christiansen C. Consensus development conference: diagnosis, prophylaxis and treatment of osteoporosis. Am J Med 1993 ; 94 : 464–650. [Google Scholar]
  2. Ott SM, Kilcoyne RF, Chesnut CH 3rd. Ability of four different techniques of measuring bone mass to diagnose vertebral fractures in postmenopausal women. J Bone Miner Res 1987 ; 2 : 201–210. [CrossRef] [PubMed] [Google Scholar]
  3. Schuit SC, van der Klift M, Weel AE, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 2004 ; 34 : 195–202. [CrossRef] [PubMed] [Google Scholar]
  4. Black DM, Thompson DE, Bauer DC, et al. Fracture risk reduction with alendronate in women with osteoporosis: the fracture intervention trial. FIT Research Group. J Clin Endocrinol Metab 2000 ; 85 : 4118–4124. [CrossRef] [PubMed] [Google Scholar]
  5. Benhamou CL, Lespessailles E, Jacquet G, et al. Fractal organization of trabecular bone images on calcaneus radiographs. J Bone Miner Res 1994 ; 9 : 1909–1918. [CrossRef] [PubMed] [Google Scholar]
  6. Geraets WGM, Van der Stelt PF, Lips P, et al. Orientation of the trabecular pattern of the distal radius around the menopause. J Biomech 1997 ; 30 : 363–370. [CrossRef] [PubMed] [Google Scholar]
  7. Lespessailles E, Gadois C, Lemineur G, et al. Bone texture analysis on direct digital radiographic images: precision study and relationship with bone mineral density at the os calcis. Calcif Tissue Int 2007 ; 80 : 97–102. [CrossRef] [PubMed] [Google Scholar]
  8. Vokes T, Lauderdale D, Ma SL, et al. Radiographic texture analysis of densitometric calcaneal images: relationship to clinical characteristics and to bone fragility. J Bone Miner Res 2010 ; 25 : 56–63. [CrossRef] [PubMed] [Google Scholar]
  9. Hans D, Goertzen AL, Krieg MA, et al. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res 2011 ; 26 : 2762–2769. [CrossRef] [PubMed] [Google Scholar]
  10. Hans D, Barthe N, Boutroy S, et al. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 2011 ; 14 : 302–312. [CrossRef] [PubMed] [Google Scholar]
  11. Boutroy S, Bouxsein ML, Munoz F, et al. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 2005 ; 90 : 6508–6515. [CrossRef] [PubMed] [Google Scholar]
  12. Patsch JM, Burghardt AJ, Kazakia G, Majumdar S. Noninvasive imaging of bone microarchitecture. Ann NY Acad Sci 2011 ; 1240 : 77–87. [CrossRef] [Google Scholar]
  13. Kazakia GJ, Majumdar S. New imaging technologies in the diagnosis of osteoporosis. Rev Endocr Metab Disord 2006 ; 7 : 67–74. [CrossRef] [PubMed] [Google Scholar]
  14. Banerjee S, Han ET, Krug R, et al. Application of refocused steady-state free-precession methods at 1.5 and 3 T to in vivo high-resolution MRI of trabecular bone: simulations and experiments. J Magn Reson Imaging 2005 ; 21 : 818–825. [CrossRef] [PubMed] [Google Scholar]
  15. Krug R, Carballido-Gamio J, Banerjee S, et al. In vivo bone and cartilage MRI using fully-balanced steady-state free-precession at 7 tesla. Magn Reson Med 2007 ; 58 : 1294–1298. [CrossRef] [PubMed] [Google Scholar]
  16. Peyrin F, Muller C, Carillon Y, et al. Synchrotron radiation microCT: a reference tool for the characterization of bone samples. Adv Exp Med Biol 2001 ; 496 : 129–142. [CrossRef] [PubMed] [Google Scholar]
  17. Chappard C, Peyrin F, Bonnassie A, et al. Subchondral bone micro architectural alterations in osteoarthritis: a synchrotron micro computed tomography study. Osteoarth Cartilage 2006 ; 14 : 215–223. [CrossRef] [Google Scholar]
  18. Nuzzo S, Lafage-Proust MH, Martin-Badosa E, et al. Synchrotron radiation microtomography allows the analysis of three-dimensional microarchitecture and degree of mineralization of human iliac crest biopsy specimens: effects of etidronate treatment. J Bone Miner Res 2002 ; 17 : 1372–1382. [CrossRef] [PubMed] [Google Scholar]
  19. Chappard C, Basillais A, Benhamou CL, et al. Assessment of trabecular bone microarchitecture from synchrotron radiation and conventional X-ray micro computed tomography: a comparative study on human femoral heads. Med Phys 2006 ; 33 : 3568–3577. [CrossRef] [PubMed] [Google Scholar]
  20. Muller R, Van Campenhout H, Van Damme B, et al. Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro computed tomography. Bone 1998 ; 23 : 59–66. [CrossRef] [PubMed] [Google Scholar]
  21. Akhter MP, Lappe JM, Davies KM, Recker RR. Transmenopausal changes in the trabecular bone structure. Bone 2007 ; 41 : 111–116. [CrossRef] [PubMed] [Google Scholar]
  22. Recker R, Masarachia P, Santora A, et al. Trabecular bone microarchitecture after alendronate treatment of osteoporotic women. Curr Med Res Opin 2005 ; 21 : 85–94. [CrossRef] [Google Scholar]
  23. Hopper TA, Meder R, Pope JM. Comparison of high-resolution MRI, optical microscopy and SEM for quantitation of trabecular architecture in the rat femur. Magn Reson Imaging 2004 ; 22 : 953–961. [CrossRef] [PubMed] [Google Scholar]
  24. Parfitt AM, Drezner MK, Glorieux FH, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res 1987 ; 2 : 595–610. [CrossRef] [PubMed] [Google Scholar]
  25. Lorensen WE. Cline HE Marching cubes: a high resolution 3D surface construction algorithm. Computer graphics 1987 ; 21 : 7–12. [Google Scholar]
  26. Hildebrand T, Ruegsegger P. A new method for the model independent assessment of thickness in three dimensional images. J Microscop 1997 ; 185 : 67–75. [Google Scholar]
  27. Ulrich D, van Rietbergen B, Laib A, et al. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 1999 ; 25 : 55–60. [CrossRef] [PubMed] [Google Scholar]
  28. Dufresne TE, Chmielewski PA, Manhart MD, et al. Risedronate preserves bone architecture in early postmenopausal women in 1 year as measured by three-dimensional microcomputed tomography. Calcif Tissue Int 2003 ; 73 : 423–432. [CrossRef] [PubMed] [Google Scholar]
  29. Feldkamp LA, Goldstein SA, Parfitt AM, et al. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 1989 ; 4 : 3–11. [CrossRef] [PubMed] [Google Scholar]
  30. Kinney JH, Ladd AJ. The relationship between three-dimensional connectivity and the elastic properties of trabecular bone. J Bone Miner Res 1998 ; 13 : 839–845. [CrossRef] [PubMed] [Google Scholar]
  31. Hahn M, Vogel M, Pompesius-Kempa M, Delling G. Trabecular bone pattern factor-a new parameter for simple quantification of bone microarchitecture. Bone 1992 ; 13 : 327–330. [CrossRef] [PubMed] [Google Scholar]
  32. Hildebrand T, Ruegsegger P. Quantification of bone microarchitecture with the structure model index. Comp Meth Biochem Biomed Eng 1997 ; 1 : 15–23. [Google Scholar]
  33. Ding M, Hvid I. Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous bone. Bone 2000 ; 26 : 291–295. [CrossRef] [PubMed] [Google Scholar]
  34. Odgaard A. Three dimensional methods for quantification of cancellous bone architecture. Bone 1997 ; 20 : 315–328. [CrossRef] [PubMed] [Google Scholar]
  35. Haralick RM, K Shanmugam K, I Dinstein. Textural Features for Image Classification. IEEE Trans Syst Man Cybern 1973 ; 6 : 610–621. [Google Scholar]
  36. Durand E, Ruegsegger P. Cancellous bone structure: Analysis of high-resolution CT images with the run-length method. J Comp Ass Tomog 1991 ; 15 : 133–139. [Google Scholar]
  37. Ranjanomennahary P, Ghalila SS, Malouche D, et al. Comparison of radiograph-based texture analysis and bone mineral density with three-dimensional microarchitecture of trabecular bone. Med Phys 2011 ; 38 : 420–428. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.