Accès gratuit
Numéro
Med Sci (Paris)
Volume 28, Numéro 12, Décembre 2012
Page(s) 1111 - 1115
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20122812022
Publié en ligne 21 décembre 2012
  1. Christiansen C. Consensus development conference: diagnosis, prophylaxis and treatment of osteoporosis. Am J Med 1993 ; 94 : 464–650. [Google Scholar]
  2. Ott SM, Kilcoyne RF, Chesnut CH 3rd. Ability of four different techniques of measuring bone mass to diagnose vertebral fractures in postmenopausal women. J Bone Miner Res 1987 ; 2 : 201–210. [CrossRef] [PubMed] [Google Scholar]
  3. Schuit SC, van der Klift M, Weel AE, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 2004 ; 34 : 195–202. [CrossRef] [PubMed] [Google Scholar]
  4. Black DM, Thompson DE, Bauer DC, et al. Fracture risk reduction with alendronate in women with osteoporosis: the fracture intervention trial. FIT Research Group. J Clin Endocrinol Metab 2000 ; 85 : 4118–4124. [CrossRef] [PubMed] [Google Scholar]
  5. Benhamou CL, Lespessailles E, Jacquet G, et al. Fractal organization of trabecular bone images on calcaneus radiographs. J Bone Miner Res 1994 ; 9 : 1909–1918. [CrossRef] [PubMed] [Google Scholar]
  6. Geraets WGM, Van der Stelt PF, Lips P, et al. Orientation of the trabecular pattern of the distal radius around the menopause. J Biomech 1997 ; 30 : 363–370. [CrossRef] [PubMed] [Google Scholar]
  7. Lespessailles E, Gadois C, Lemineur G, et al. Bone texture analysis on direct digital radiographic images: precision study and relationship with bone mineral density at the os calcis. Calcif Tissue Int 2007 ; 80 : 97–102. [CrossRef] [PubMed] [Google Scholar]
  8. Vokes T, Lauderdale D, Ma SL, et al. Radiographic texture analysis of densitometric calcaneal images: relationship to clinical characteristics and to bone fragility. J Bone Miner Res 2010 ; 25 : 56–63. [CrossRef] [PubMed] [Google Scholar]
  9. Hans D, Goertzen AL, Krieg MA, et al. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res 2011 ; 26 : 2762–2769. [CrossRef] [PubMed] [Google Scholar]
  10. Hans D, Barthe N, Boutroy S, et al. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 2011 ; 14 : 302–312. [CrossRef] [PubMed] [Google Scholar]
  11. Boutroy S, Bouxsein ML, Munoz F, et al. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 2005 ; 90 : 6508–6515. [CrossRef] [PubMed] [Google Scholar]
  12. Patsch JM, Burghardt AJ, Kazakia G, Majumdar S. Noninvasive imaging of bone microarchitecture. Ann NY Acad Sci 2011 ; 1240 : 77–87. [CrossRef] [Google Scholar]
  13. Kazakia GJ, Majumdar S. New imaging technologies in the diagnosis of osteoporosis. Rev Endocr Metab Disord 2006 ; 7 : 67–74. [CrossRef] [PubMed] [Google Scholar]
  14. Banerjee S, Han ET, Krug R, et al. Application of refocused steady-state free-precession methods at 1.5 and 3 T to in vivo high-resolution MRI of trabecular bone: simulations and experiments. J Magn Reson Imaging 2005 ; 21 : 818–825. [CrossRef] [PubMed] [Google Scholar]
  15. Krug R, Carballido-Gamio J, Banerjee S, et al. In vivo bone and cartilage MRI using fully-balanced steady-state free-precession at 7 tesla. Magn Reson Med 2007 ; 58 : 1294–1298. [CrossRef] [PubMed] [Google Scholar]
  16. Peyrin F, Muller C, Carillon Y, et al. Synchrotron radiation microCT: a reference tool for the characterization of bone samples. Adv Exp Med Biol 2001 ; 496 : 129–142. [CrossRef] [PubMed] [Google Scholar]
  17. Chappard C, Peyrin F, Bonnassie A, et al. Subchondral bone micro architectural alterations in osteoarthritis: a synchrotron micro computed tomography study. Osteoarth Cartilage 2006 ; 14 : 215–223. [CrossRef] [Google Scholar]
  18. Nuzzo S, Lafage-Proust MH, Martin-Badosa E, et al. Synchrotron radiation microtomography allows the analysis of three-dimensional microarchitecture and degree of mineralization of human iliac crest biopsy specimens: effects of etidronate treatment. J Bone Miner Res 2002 ; 17 : 1372–1382. [CrossRef] [PubMed] [Google Scholar]
  19. Chappard C, Basillais A, Benhamou CL, et al. Assessment of trabecular bone microarchitecture from synchrotron radiation and conventional X-ray micro computed tomography: a comparative study on human femoral heads. Med Phys 2006 ; 33 : 3568–3577. [CrossRef] [PubMed] [Google Scholar]
  20. Muller R, Van Campenhout H, Van Damme B, et al. Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro computed tomography. Bone 1998 ; 23 : 59–66. [CrossRef] [PubMed] [Google Scholar]
  21. Akhter MP, Lappe JM, Davies KM, Recker RR. Transmenopausal changes in the trabecular bone structure. Bone 2007 ; 41 : 111–116. [CrossRef] [PubMed] [Google Scholar]
  22. Recker R, Masarachia P, Santora A, et al. Trabecular bone microarchitecture after alendronate treatment of osteoporotic women. Curr Med Res Opin 2005 ; 21 : 85–94. [CrossRef] [Google Scholar]
  23. Hopper TA, Meder R, Pope JM. Comparison of high-resolution MRI, optical microscopy and SEM for quantitation of trabecular architecture in the rat femur. Magn Reson Imaging 2004 ; 22 : 953–961. [CrossRef] [PubMed] [Google Scholar]
  24. Parfitt AM, Drezner MK, Glorieux FH, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res 1987 ; 2 : 595–610. [CrossRef] [PubMed] [Google Scholar]
  25. Lorensen WE. Cline HE Marching cubes: a high resolution 3D surface construction algorithm. Computer graphics 1987 ; 21 : 7–12. [CrossRef] [Google Scholar]
  26. Hildebrand T, Ruegsegger P. A new method for the model independent assessment of thickness in three dimensional images. J Microscop 1997 ; 185 : 67–75. [CrossRef] [Google Scholar]
  27. Ulrich D, van Rietbergen B, Laib A, et al. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 1999 ; 25 : 55–60. [CrossRef] [PubMed] [Google Scholar]
  28. Dufresne TE, Chmielewski PA, Manhart MD, et al. Risedronate preserves bone architecture in early postmenopausal women in 1 year as measured by three-dimensional microcomputed tomography. Calcif Tissue Int 2003 ; 73 : 423–432. [CrossRef] [PubMed] [Google Scholar]
  29. Feldkamp LA, Goldstein SA, Parfitt AM, et al. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 1989 ; 4 : 3–11. [CrossRef] [PubMed] [Google Scholar]
  30. Kinney JH, Ladd AJ. The relationship between three-dimensional connectivity and the elastic properties of trabecular bone. J Bone Miner Res 1998 ; 13 : 839–845. [CrossRef] [PubMed] [Google Scholar]
  31. Hahn M, Vogel M, Pompesius-Kempa M, Delling G. Trabecular bone pattern factor-a new parameter for simple quantification of bone microarchitecture. Bone 1992 ; 13 : 327–330. [CrossRef] [PubMed] [Google Scholar]
  32. Hildebrand T, Ruegsegger P. Quantification of bone microarchitecture with the structure model index. Comp Meth Biochem Biomed Eng 1997 ; 1 : 15–23. [CrossRef] [PubMed] [Google Scholar]
  33. Ding M, Hvid I. Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous bone. Bone 2000 ; 26 : 291–295. [CrossRef] [PubMed] [Google Scholar]
  34. Odgaard A. Three dimensional methods for quantification of cancellous bone architecture. Bone 1997 ; 20 : 315–328. [CrossRef] [PubMed] [Google Scholar]
  35. Haralick RM, K Shanmugam K, I Dinstein. Textural Features for Image Classification. IEEE Trans Syst Man Cybern 1973 ; 6 : 610–621. [CrossRef] [Google Scholar]
  36. Durand E, Ruegsegger P. Cancellous bone structure: Analysis of high-resolution CT images with the run-length method. J Comp Ass Tomog 1991 ; 15 : 133–139. [CrossRef] [Google Scholar]
  37. Ranjanomennahary P, Ghalila SS, Malouche D, et al. Comparison of radiograph-based texture analysis and bone mineral density with three-dimensional microarchitecture of trabecular bone. Med Phys 2011 ; 38 : 420–428. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.