Accès gratuit
Med Sci (Paris)
Volume 26, Numéro 8-9, Août-Septembre 2010
Page(s) 734 - 739
Section M/S revues
Publié en ligne 15 août 2010
  1. Urban JD, Clarke WP, von Zastrow M, et al. Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 2007 ; 320 : 1-13. [Google Scholar]
  2. Audet N, Paquin-Gobeil M, Landry-Paquet O, et al. Internalization and Src activity regulate the time course of ERK activation by delta opioid receptor ligands. J Biol Chem 2005 ; 280 : 7808-16. [Google Scholar]
  3. Kenakin T. Functional selectivity through protean and biased agonism: who steers the ship? Mol Pharmacol 2007 ; 72 : 1393-401. [Google Scholar]
  4. May LT, Hill SJ. ERK phosphorylation: spatial and temporal regulation by G protein-coupled receptors. Int J Biochem Cell Biol 2008 ; 40 : 2013-7. [Google Scholar]
  5. Mathews JL, Smrcka AV, Bidlack JM. A novel G-betagamma-subunit inhibitor selectively modulates mu-opioid-dependent antinociception and attenuates acute morphine-induced antinociceptive tolerance and dependence. J Neurosci 2008 ; 28 : 12183-9. [Google Scholar]
  6. McDowell TS. Fentanyl decreases Ca2+ currents in a population of capsaicin-responsive sensory neurons. Anesthesiology 2003 ; 98 : 223-31. [Google Scholar]
  7. Marker CL, Lujan R, Loh HH, Wickman K. Spinal G-protein-gated potassium channels contribute in a dose-dependent manner to the analgesic effect of mu- and delta- but not kappa-opioids. J Neurosci 2005 ; 25 : 3551-9. [Google Scholar]
  8. Zheng H, Loh HH, Law Py. Beta-arrestin-dependent mu-opioid receptor-activated extracellular signal-regulated kinases (ERK) Translocate to Nucleus in Contrast to G protein-dependent ERK activation. Mol Pharmacol 2008 ; 73 : 178-90. [Google Scholar]
  9. Kieffer BL, Gaveriaux-Ruff C. Exploring the opioid system by gene knockout. Prog Neurobiol 2002 ; 66 : 285-306. [Google Scholar]
  10. Negus SS, Schrode K, Stevenson GW. Micro/kappa opioid interactions in rhesus monkeys: implications for analgesia and abuse liability. Exp Clin Psychopharmacol 2008 ; 16 : 386-99. [Google Scholar]
  11. Beaudry H, Proteau-Gagné A, Li S, et al. Differential noxious and motor tolerance of chronic delta opioid receptor agonists in rodents. Neuroscience 2009 ; 161 : 381-91. [Google Scholar]
  12. Walsh SL, Strain EC, Abreu ME, Bigelow GE. Enadoline, a selective kappa opioid agonist: comparison with butorphanol and hydromorphone in humans. Psychopharmacology (Berl) 2001 ; 157 : 151-62. [Google Scholar]
  13. McLaughlin JP, Myers LC, Zarek PE, et al. Prolonged kappa opioid receptor phosphorylation mediated by G-protein receptor kinase underlies sustained analgesic tolerance. J Biol Chem 2004 ; 279 : 1810-8. [Google Scholar]
  14. Bruchas MR, Land BB, Aita M, et al. Stress-induced p38 mitogen-activated protein kinase activation mediates kappa-opioid-dependent dysphoria. J Neurosci 2007 ; 27 : 11614-23. [Google Scholar]
  15. May CN, Dashwood MR, Whitehead CJ, Mathias CJ. Differential cardiovascular and respiratory responses to central administration of selective opioid agonists in conscious rabbits: correlation with receptor distribution. Br J Pharmacol 1989 ; 98 : 903-13. [Google Scholar]
  16. Porreca F, Mosberg HI, Hurst R, et al. Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse. J Pharmacol Exp Ther 1984 ; 230 : 341-8. [Google Scholar]
  17. Cowan A, Zhu XZ, Mosberg HI, et al. Direct dependence studies in rats with agents selective for different types of opioid receptor. J Pharmacol Exp Ther 1988 ; 246 : 950-5. [Google Scholar]
  18. Broom DC, Nitsche JF, Pintar JE, et al. Comparison of receptor mechanisms and efficacy requirements for delta-agonist-induced convulsive activity and antinociception in mice. J Pharmacol Exp Ther 2002 ; 303 : 723-9. [Google Scholar]
  19. Pradhan AA, Becker JA, Scherrer G, et al. In vivo delta opioid receptor internalization controls behavioral effects of agonists. PLoS One 2009 ; 4 : e5425. [Google Scholar]
  20. Alves ID, Ciano KA, Boguslavski V, et al. Selectivity, cooperativity, and reciprocity in the interactions between the delta-opioid receptor, its ligands, and G-proteins. J Biol Chem 2004 ; 279 : 44673-82. [Google Scholar]
  21. Audet N, Gales C, Archer-Lahlou E, et al. Bioluminescence resonance energy transfer assays reveal ligand-specific conformational changes within preformed signaling complexes containing deltaopioid receptors and heterotrimeric G proteins. J Biol Chem 2008 ; 283 : 15078-88. [Google Scholar]
  22. Allouche S, Polastron J, Hasbi A, et al. Differential G-protein activation by alkaloid and peptide opioid agonists in the human neuroblastoma cell line SK-N-BE. Biochem J 1999 ; 342 : 71-8. [Google Scholar]
  23. Stanasila L, Lim WK, Neubig RR, Pattus F. Coupling efficacy and selectivity of the human muopioid receptor expressed as receptor-Galpha fusion proteins in Escherichia coli. J Neurochem 2000 ; 75 : 1190-9. [Google Scholar]
  24. Gupta A, Decaillot FM, Devi LA. Targeting opioid receptor heterodimers: strategies for screening and drug development. AAPS J 2006 ; 8 : E153-9. [Google Scholar]
  25. Fan T, Varghese G, Nguyen T, et al. A role for the distal carboxyl tails in generating the novel pharmacology and G protein activation profile of mu and delta opioid receptor hetero-oligomers. J Biol Chem 2005 ; 280 : 38478-88. [Google Scholar]
  26. Johnson EA, Oldfield S, Braksator E, et al. Agonist-selective mechanisms of mu-opioid receptor desensitization in human embryonic kidney 293 cells. Mol Pharmacol 2006 ; 70 : 676-85. [Google Scholar]
  27. Gabra BH, Bailey CP, Kelly E, et al. Pre-treatment with a PKC or PKA inhibitor prevents the development of morphine tolerance but not physical dependence in mice. Brain Res 2008 ; 1217 : 70-7. [Google Scholar]
  28. Pineyro G. Fonctional selectivity at opioid receptors. In : Neve KA, ed. Fonctional selectivity of G protein-coupled receptor ligands. New york : Humana Press, 2009 : 243-66. [Google Scholar]
  29. Groer CE, Tidgewell K, Moyer RA, et al. An opioid agonist that does not induce micro-opioid receptor: arrestin interactions or receptor internalization. Mol Pharmacol 2007 ; 71 : 549-57. [Google Scholar]
  30. Okura T, Varga EV, Hosohata y, et al. Agonist-specific down-regulation of the human delta-opioid receptor. Eur J Pharmacol 2003 ; 459 : 9-16. [Google Scholar]
  31. Archer-Lahlou E, Audet N, Amraei MG, et al. Src promotes delta opioid receptor (DOR) desensitization by interfering with receptor recycling. J Cell Mol Med 2009 ; 13 : 147-63. [Google Scholar]
  32. Ho IK, Loh HH, Way EL. Effects of cyclic 3’, 5’-adenosine monophosphate on morphine tolerance and physical dependence. J Pharmacol Exp Ther 1973 ; 185 : 347-57. [Google Scholar]
  33. Bernstein MA, Welch SP. Effects of spinal versus supraspinal administration of cyclic nucleotide-dependent protein kinase inhibitors on morphine tolerance in mice. Drug Alcohol Depend 1997 ; 44 : 41-6. [Google Scholar]
  34. yoshimura M, Wu PH, Hoffman PL, Tabakoff B. Overexpression of type 7 adenylyl cyclase in the mouse brain enhances acute and chronic actions of morphine. Mol Pharmacol 2000 ; 58 : 1011-6. [Google Scholar]
  35. Li S, Lee ML, Bruchas MR, et al. Calmodulin-stimulated adenylyl cyclase gene deletion affects morphine responses. Mol Pharmacol 2006 ; 70 : 1742-9. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.