Free Access
Med Sci (Paris)
Volume 26, Number 8-9, Août-Septembre 2010
Page(s) 729 - 733
Section M/S revues
Published online 15 August 2010
  1. Wellbrock C, Kasarides M, Marais R. The Raf proteins take centre stage. Nat Rev Mol Cell Biol 2004 ; 5 : 875-85. [Google Scholar]
  2. Pritchard CA, Samuels ML, Bosch E, McMahon M. Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol Cell Biol 1995 ; 15 : 6430-42. [Google Scholar]
  3. Marais R, Light Y, Paterson HF, et al. Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem 1997 ; 272 : 4378-83. [Google Scholar]
  4. Papin C, Denouel-Galy A, Laugier D, et al. Modulation of kinase activity and oncogenic properties by alternative splicing reveals a novel regulatory mechanism for B-Raf. J Biol Chem 1998 ; 273 : 24939-47. [Google Scholar]
  5. Baljuls A, Mueller T, Drexler HC, et al. Unique N-region determines low basal activity and limited inducibility of A-RAF kinase: the role of N-region in the evolutionary divergence of RAF kinase function in vertebrates. J Biol Chem 2007 ; 282 : 26575-90. [Google Scholar]
  6. Fischer A, Hekman M, Kuhlmann J, et al. B- and C-RAF display essential differences in their binding to Ras: the isotype-specific N terminus of B-RAF facilitates Ras binding. J Biol Chem 2007 ; 282 : 26503-16. [Google Scholar]
  7. Galmiche A, Fueller J, Santel A, et al. Isoform-specific interaction of C-RAF with mitochondria. J Biol Chem 2008 ; 283 : 14857-66. [Google Scholar]
  8. Cutler RE Jr, Stephens RM, Saracino MR, Morrison DK. Autoregulation of the Raf-1 serine/threonine kinase. Proc Natl Acad Sci USA 1998 ; 95 : 9214-9. [Google Scholar]
  9. Terai K, Matsuda M. Ras binding opens c-Raf to expose the docking site for mitogen-activated protein kinase kinase. EMBO Rep 2005 ; 6 : 251-5. [Google Scholar]
  10. Harding AS, Hancock JF. Using plasma membrane nanoclusters to build better signaling circuits. Trends Cell Biol 2008 ; 18 : 364-71. [Google Scholar]
  11. Chen C, Lewis RE, White MA. IMP modulates KSR1-dependent multivalent complex formation to specify ERK1/2 pathway activation and response thresholds. J Biol Chem 2008 ; 283 : 12789-96. [Google Scholar]
  12. Wan PT, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004 ; 116 : 855-67. [Google Scholar]
  13. Rajakulendran T, Sahmi M, Lefrançois M, et al. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 2009 ; 461 : 542-5. [Google Scholar]
  14. Mikula M, Schreiber M, Husak Z, et al. Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J 2001 ; 20 : 1952-62. [Google Scholar]
  15. Wiese S, Pei G, Karch C, et al. Specific function of B-Raf in mediating survival of embryonic motoneurons and sensory neurons. Nat Neurosci 2001 ; 4 : 137-42. [Google Scholar]
  16. Galabova-Kovacs G, Matzen D, Piazzolla D, et al. Essential role of B-Raf in ERK activation during extraembryonic development. Proc Natl Acad Sci USA 2006 ; 103 : 1325-30. [Google Scholar]
  17. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008 ; 9 : 47-59. [Google Scholar]
  18. Galmiche A, Fueller J. RAF kinases and mitochondria. Biochim Biophys Acta 2007 ; 1773 : 1256-62. [Google Scholar]
  19. Balmanno K, Cook SJ. Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ 2009 ; 16 : 368-77. [Google Scholar]
  20. Allan LA, Morrice N, Brady S, et al. Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol 2003 ; 5 : 647-54. [Google Scholar]
  21. O’Neill E, Rushworth L, Baccarini M, Kolch W. Role of the kinase MST2 in suppression of apoptosis by the proto-oncogene product Raf-1. Science 2004 ; 306 : 2267-70. [Google Scholar]
  22. Chen J, Fujii K, Zhang L, et al. Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci USA 2001 ; 98 : 7783-8. [Google Scholar]
  23. Niault T, Sobczak I, Meissl K, et al. From autoinhibition to inhibition in trans: the Raf-1 regulatory domain inhibits Rok-alpha kinase activity. J Cell Biol 2009 ; 187 : 335-42. [Google Scholar]
  24. Piazzolla D, Meissl K, Kucerova L, et al. Raf-1 sets the threshold of Fas sensitivity by modulating Rok-alpha signaling. J Cell Biol 2005 ; 171 : 1013-22. [Google Scholar]
  25. Schulze A, Nicke B, Warne PH, et al. The transcriptional response to Raf activation is almost completely dependent on mitogen-activated protein kinase kinase activity and shows a major autocrine component. Mol Biol Cell 2004 ; 15 : 3450-63. [Google Scholar]
  26. Whitmarsh AJ. Regulation of gene transcription by mitogen-activated protein kinase signaling pathways. Biochim Biophys Acta 2007 ; 1773 : 1285-98. [Google Scholar]
  27. Liu J, Suresh Kumar KG, Yu D, et al. Oncogenic BRAF regulates beta-Trcp expression and NF-kappaB activity in human melanoma cells. Oncogene 2007 ; 26 : 1954-8. [Google Scholar]
  28. Gazin C, Wajapeyee N, Gobeil S, et al. An elaborate pathway required for Ras-mediated epigenetic silencing. Nature 2007 ; 449 : 1073-7. [Google Scholar]
  29. Solit DB, Garraway LA, Pratilas CA, et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 2006 ; 439 : 358-62. [Google Scholar]
  30. Pratilas CA, Taylor BS, Ye Q, et al. V600EBRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA 2009 ; 106 : 4519-24. [Google Scholar]
  31. Letai AG. Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer 2008 ; 8 : 121-32. [Google Scholar]
  32. Sheridan C, Brumatti G, Martin SJ. Oncogenic B-RafV600E inhibits apoptosis and promotes ERK-dependent inactivation of Bad and Bim. J Biol Chem 2008 ; 283 : 22128-35. [Google Scholar]
  33. Boisvert-Adamo K, Aplin AE. Mutant B-RAF mediates resistance to anoikis via Bad and Bim. Oncogene 2008 ; 27 : 3301-12. [Google Scholar]
  34. Wickenden JA, Jin H, Johnson M, et al. Colorectal cancer cells with the BRAF(V600E) mutation are addicted to the ERK1/2 pathway for growth factor-independent survival and repression of BIM. Oncogene 2008 ; 27 : 7150-61. [Google Scholar]
  35. Cragg MS, Harris C, Strasser A, Scott CL. Unleashing the power of inhibitors of oncogenic kinases through BH3 mimetics. Nat Rev Cancer 2009 ; 9 : 321-6. [Google Scholar]
  36. Cragg MS, Kuroda J, Puthalakath H, et al. Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics. PLoS Med 2007 ; 4 : 1681-9. [Google Scholar]
  37. Gong Y, Somwar R, Politi K, et al. Induction of BIM is essential for apoptosis triggered by EGFR kinase inhibitors in mutant EGFR-dependent lung adenocarcinomas. PLoS Med 2007 ; 4 : e294. [Google Scholar]
  38. Cragg MS, Jansen ES, Cook M, et al. Treatment of B-RAF mutant human tumor cells with a MEK inhibitor requires Bim and is enhanced by a BH3 mimetic. J Clin Invest 2008 ; 118 : 3651-9. [Google Scholar]
  39. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006 ; 7 : 85-96. [Google Scholar]
  40. Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 2007 ; 447 : 864-8. [Google Scholar]
  41. Lavoie H, Therrien M. Mécanisme d’activation de l’oncogène BRAF. L’union fait la force. Med Sci (Paris) 2010 ; 26 : 459-60. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.