Accès gratuit
Numéro
Med Sci (Paris)
Volume 26, Numéro 8-9, Août-Septembre 2010
Page(s) 729 - 733
Section M/S revues
DOI https://doi.org/10.1051/medsci/2010268-9729
Publié en ligne 15 août 2010
  1. Wellbrock C, Kasarides M, Marais R. The Raf proteins take centre stage. Nat Rev Mol Cell Biol 2004 ; 5 : 875-85. [Google Scholar]
  2. Pritchard CA, Samuels ML, Bosch E, McMahon M. Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol Cell Biol 1995 ; 15 : 6430-42. [Google Scholar]
  3. Marais R, Light Y, Paterson HF, et al. Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem 1997 ; 272 : 4378-83. [Google Scholar]
  4. Papin C, Denouel-Galy A, Laugier D, et al. Modulation of kinase activity and oncogenic properties by alternative splicing reveals a novel regulatory mechanism for B-Raf. J Biol Chem 1998 ; 273 : 24939-47. [Google Scholar]
  5. Baljuls A, Mueller T, Drexler HC, et al. Unique N-region determines low basal activity and limited inducibility of A-RAF kinase: the role of N-region in the evolutionary divergence of RAF kinase function in vertebrates. J Biol Chem 2007 ; 282 : 26575-90. [Google Scholar]
  6. Fischer A, Hekman M, Kuhlmann J, et al. B- and C-RAF display essential differences in their binding to Ras: the isotype-specific N terminus of B-RAF facilitates Ras binding. J Biol Chem 2007 ; 282 : 26503-16. [Google Scholar]
  7. Galmiche A, Fueller J, Santel A, et al. Isoform-specific interaction of C-RAF with mitochondria. J Biol Chem 2008 ; 283 : 14857-66. [Google Scholar]
  8. Cutler RE Jr, Stephens RM, Saracino MR, Morrison DK. Autoregulation of the Raf-1 serine/threonine kinase. Proc Natl Acad Sci USA 1998 ; 95 : 9214-9. [Google Scholar]
  9. Terai K, Matsuda M. Ras binding opens c-Raf to expose the docking site for mitogen-activated protein kinase kinase. EMBO Rep 2005 ; 6 : 251-5. [Google Scholar]
  10. Harding AS, Hancock JF. Using plasma membrane nanoclusters to build better signaling circuits. Trends Cell Biol 2008 ; 18 : 364-71. [Google Scholar]
  11. Chen C, Lewis RE, White MA. IMP modulates KSR1-dependent multivalent complex formation to specify ERK1/2 pathway activation and response thresholds. J Biol Chem 2008 ; 283 : 12789-96. [Google Scholar]
  12. Wan PT, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004 ; 116 : 855-67. [Google Scholar]
  13. Rajakulendran T, Sahmi M, Lefrançois M, et al. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 2009 ; 461 : 542-5. [Google Scholar]
  14. Mikula M, Schreiber M, Husak Z, et al. Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J 2001 ; 20 : 1952-62. [Google Scholar]
  15. Wiese S, Pei G, Karch C, et al. Specific function of B-Raf in mediating survival of embryonic motoneurons and sensory neurons. Nat Neurosci 2001 ; 4 : 137-42. [Google Scholar]
  16. Galabova-Kovacs G, Matzen D, Piazzolla D, et al. Essential role of B-Raf in ERK activation during extraembryonic development. Proc Natl Acad Sci USA 2006 ; 103 : 1325-30. [Google Scholar]
  17. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008 ; 9 : 47-59. [Google Scholar]
  18. Galmiche A, Fueller J. RAF kinases and mitochondria. Biochim Biophys Acta 2007 ; 1773 : 1256-62. [Google Scholar]
  19. Balmanno K, Cook SJ. Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ 2009 ; 16 : 368-77. [Google Scholar]
  20. Allan LA, Morrice N, Brady S, et al. Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol 2003 ; 5 : 647-54. [Google Scholar]
  21. O’Neill E, Rushworth L, Baccarini M, Kolch W. Role of the kinase MST2 in suppression of apoptosis by the proto-oncogene product Raf-1. Science 2004 ; 306 : 2267-70. [Google Scholar]
  22. Chen J, Fujii K, Zhang L, et al. Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci USA 2001 ; 98 : 7783-8. [Google Scholar]
  23. Niault T, Sobczak I, Meissl K, et al. From autoinhibition to inhibition in trans: the Raf-1 regulatory domain inhibits Rok-alpha kinase activity. J Cell Biol 2009 ; 187 : 335-42. [Google Scholar]
  24. Piazzolla D, Meissl K, Kucerova L, et al. Raf-1 sets the threshold of Fas sensitivity by modulating Rok-alpha signaling. J Cell Biol 2005 ; 171 : 1013-22. [Google Scholar]
  25. Schulze A, Nicke B, Warne PH, et al. The transcriptional response to Raf activation is almost completely dependent on mitogen-activated protein kinase kinase activity and shows a major autocrine component. Mol Biol Cell 2004 ; 15 : 3450-63. [Google Scholar]
  26. Whitmarsh AJ. Regulation of gene transcription by mitogen-activated protein kinase signaling pathways. Biochim Biophys Acta 2007 ; 1773 : 1285-98. [Google Scholar]
  27. Liu J, Suresh Kumar KG, Yu D, et al. Oncogenic BRAF regulates beta-Trcp expression and NF-kappaB activity in human melanoma cells. Oncogene 2007 ; 26 : 1954-8. [Google Scholar]
  28. Gazin C, Wajapeyee N, Gobeil S, et al. An elaborate pathway required for Ras-mediated epigenetic silencing. Nature 2007 ; 449 : 1073-7. [Google Scholar]
  29. Solit DB, Garraway LA, Pratilas CA, et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 2006 ; 439 : 358-62. [Google Scholar]
  30. Pratilas CA, Taylor BS, Ye Q, et al. V600EBRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA 2009 ; 106 : 4519-24. [Google Scholar]
  31. Letai AG. Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer 2008 ; 8 : 121-32. [Google Scholar]
  32. Sheridan C, Brumatti G, Martin SJ. Oncogenic B-RafV600E inhibits apoptosis and promotes ERK-dependent inactivation of Bad and Bim. J Biol Chem 2008 ; 283 : 22128-35. [Google Scholar]
  33. Boisvert-Adamo K, Aplin AE. Mutant B-RAF mediates resistance to anoikis via Bad and Bim. Oncogene 2008 ; 27 : 3301-12. [Google Scholar]
  34. Wickenden JA, Jin H, Johnson M, et al. Colorectal cancer cells with the BRAF(V600E) mutation are addicted to the ERK1/2 pathway for growth factor-independent survival and repression of BIM. Oncogene 2008 ; 27 : 7150-61. [Google Scholar]
  35. Cragg MS, Harris C, Strasser A, Scott CL. Unleashing the power of inhibitors of oncogenic kinases through BH3 mimetics. Nat Rev Cancer 2009 ; 9 : 321-6. [Google Scholar]
  36. Cragg MS, Kuroda J, Puthalakath H, et al. Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics. PLoS Med 2007 ; 4 : 1681-9. [Google Scholar]
  37. Gong Y, Somwar R, Politi K, et al. Induction of BIM is essential for apoptosis triggered by EGFR kinase inhibitors in mutant EGFR-dependent lung adenocarcinomas. PLoS Med 2007 ; 4 : e294. [Google Scholar]
  38. Cragg MS, Jansen ES, Cook M, et al. Treatment of B-RAF mutant human tumor cells with a MEK inhibitor requires Bim and is enhanced by a BH3 mimetic. J Clin Invest 2008 ; 118 : 3651-9. [Google Scholar]
  39. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006 ; 7 : 85-96. [Google Scholar]
  40. Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 2007 ; 447 : 864-8. [Google Scholar]
  41. Lavoie H, Therrien M. Mécanisme d’activation de l’oncogène BRAF. L’union fait la force. Med Sci (Paris) 2010 ; 26 : 459-60. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.