Accès gratuit
Numéro
Med Sci (Paris)
Volume 26, Numéro 5, Mai 2010
Page(s) 516 - 521
Section M/S revues
DOI https://doi.org/10.1051/medsci/2010265516
Publié en ligne 15 mai 2010
  1. Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 2001; 65 : 391–426. [Google Scholar]
  2. Leroy K, Yilmaz Z, Brion JP. Increased level of active GSK-3beta in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol 2007; 33 : 43–55. [Google Scholar]
  3. Brownlees J, Irving NG, Brion JP, et al. Tau phosphorylation in transgenic mice expressing glycogen synthase kinase-3beta transgenes. Neuroreport 1997; 8 : 3251–5. [Google Scholar]
  4. Engel T, Hernandez F, Avila J, et al. Full reversal of Alzheimer’s disease-like phenotype in a mouse model with conditional overexpression of glycogen synthase kinase-3. J Neurosci 2006; 26 : 5083–90. [Google Scholar]
  5. Aplin AE, Gibb GM, Jacobsen JS, et al. In vitro phosphorylation of the cytoplasmic domain of the amyloid precursor protein by glycogen synthase kinase-3beta. J Neurochem 1996; 67 : 699–707. [Google Scholar]
  6. Qing H, He G, Ly PT, et al. Valproic acid inhibits Abeta production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J Exp Med 2008; 205 : 2781–9. [Google Scholar]
  7. Su Y, Ryder J, Li B, et al. Lithium, a common drug for bipolar disorder treatment, regulates amyloid-beta precursor protein processing. Biochemistry 2004; 43 : 6899–908. [Google Scholar]
  8. Terwel D, Muyllaert D, Dewachter I, et al. Amyloid activates GSK-3beta to aggravate neuronal tauopathy in bigenic mice. Am J Pathol 2008; 172 : 786–98. [Google Scholar]
  9. Checler F, Alves da Costa C, Dumanchin-Njock C, et al. Métabolisme du précurseur du peptide amyloïde et présénilines. Med Sci (Paris) 2002; 18 : 717–24. [Google Scholar]
  10. Takashima A, Murayama M, Murayama O, et al. Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate tau. Proc Natl Acad Sci USA 1998; 95 : 9637–41. [Google Scholar]
  11. Murayama M, Tanaka S, Palacino J, et al. Direct association of presenilin-1 with beta-catenin. FEBS Lett 1998; 433 : 73–7. [Google Scholar]
  12. Rockenstein E, Torrance M, Adame A, et al. Neuroprotective effects of regulators of the glycogen synthase kinase-3beta signaling pathway in a transgenic model of Alzheimer’s disease are associated with reduced amyloid precursor protein phosphorylation. J Neurosci 2007; 27 : 1981–91. [Google Scholar]
  13. Nakashima H, Ishihara T, Suguimoto P, et al. Chronic lithium treatment decreases tau lesions by promoting ubiquitination in a mouse model of tauopathies. Acta Neuropathol 2005; 110 : 547–56. [Google Scholar]
  14. Engel T, Goni-Oliver P, Lucas JJ, et al. Chronic lithium administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J Neurochem 2006; 99 : 1445–55. [Google Scholar]
  15. Caccamo A, Oddo S, Tran LX, et al. Lithium reduces tau phosphorylation but not A beta or working memory deficits in a transgenic model with both plaques and tangles. Am J Pathol 2007; 170 : 1669–75. [Google Scholar]
  16. Hu S, Begum AN, Jones MR, et al. GSK3 inhibitors show benefits in an Alzheimer’s disease (AD) model of neurodegeneration but adverse effects in control animals. Neurobiol Dis 2009; 33 : 193–206. [Google Scholar]
  17. Jope RS, Bijur GN. Mood stabilizers, glycogen synthase kinase-3beta and cell survival. Mol Psychiatry 2002; 7 (suppl 1) : S35–45. [Google Scholar]
  18. Gomez-Sintes R, Hernandez F, Bortolozzi A, et al. Neuronal apoptosis and reversible motor deficit in dominant-negative GSK-3 conditional transgenic mice. EMBO J 2007; 26 : 2743–54. [Google Scholar]
  19. Peineau S, Taghibiglou C, Bradley C, et al. LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron 2007; 53 : 703–17. [Google Scholar]
  20. Bell EC, Willson MC, Wilman AH, et al. Differential effects of chronic lithium and valproate on brain activation in healthy volunteers. Hum Psychopharmacol 2005; 20 : 415–24. [Google Scholar]
  21. Martinez A, Perez DI. GSK-3 inhibitors: a ray of hope for the treatment of Alzheimer’s disease ? J Alzheimers Dis 2008; 15 : 181–91. [Google Scholar]
  22. Dagda RK, Zhu J, Chu CT. Mitochondrial kinases in Parkinson’s disease: Converging insights from neurotoxin and genetic models. Mitochondrion 2009; 9 : 289–98. [Google Scholar]
  23. Nagao M, Hayashi H. Glycogen synthase kinase-3beta is associated with Parkinson’s disease. Neurosci Lett 2009; 449 : 103–7. [Google Scholar]
  24. Wang W, Yang Y, Ying C, et al. Inhibition of glycogen synthase kinase-3beta protects dopaminergic neurons from MPTP toxicity. Neuropharmacology 2007; 52 : 1678–84. [Google Scholar]
  25. Petit-Paitel A, Brau F, Cazareth J, et al. Involvment of cytosolic and mitochondrial GSK-3beta in mitochondrial dysfunction and neuronal cell death of MPTP/MPP-treated neurons. PLoS One 2009; 4 : e5491. [Google Scholar]
  26. Arima K, Hirai S, Sunohara N, et al. Cellular co-localization of phosphorylated tau- and NACP/alpha-synuclein-epitopes in lewy bodies in sporadic Parkinson’s disease and in dementia with Lewy bodies. Brain Res 1999; 843 : 53–61. [Google Scholar]
  27. Duda JE, Giasson BI, Mabon ME, et al. Concurrence of alpha-synuclein and tau brain pathology in the Contursi kindred. Acta Neuropathol 2002 : 104 : 7–11. [Google Scholar]
  28. Duka T, Duka V, Joyce J N, et al. Alpha-synuclein contributes to GSK-3(beta)-catalyzed Tau phosphorylation in Parkinson’s disease models. Faseb J 2009; 23 : 2820–30. [Google Scholar]
  29. Ribeiro CS, Carneiro K, Ross CA, et al. Synphilin-1 is developmentally localized to synaptic terminals, and its association with synaptic vesicles is modulated by alpha-synuclein. J Biol Chem 2002; 277 : 23927–33. [Google Scholar]
  30. Coux O, Piechaczyk M. Le système ubiquitine/protéasome : un ensemble (de) complexe(s) pour dégrader les protéines. Med Sci (Paris) 2000; 16 : 623–9. [Google Scholar]
  31. Avraham E, Szargel R, Eyal A, et al. Glycogen synthase kinase 3beta modulates synphilin-1 ubiquitylation and cellular inclusion formation by SIAH: implications for proteasomal function and Lewy body formation. J Biol Chem 2005 : 280 : 42877–86. [Google Scholar]
  32. Park SS, Zhao H, Mueller RA, et al. Bradykinin prevents reperfusion injury by targeting mitochondrial permeability transition pore through glycogen synthase kinase 3beta. J Mol Cell Cardiol 2006; 40 : 708–16. [Google Scholar]
  33. Youdim MB, Arraf Z. Prevention of MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) dopaminergic neurotoxicity in mice by chronic lithium: involvements of Bcl-2 and Bax. Neuropharmacology 2004; 46 : 1130–40. [Google Scholar]
  34. Carmichael J, Sugars KL, Bao YP, et al. Glycogen synthase kinase-3beta inhibitors prevent cellular polyglutamine toxicity caused by the Huntington’s disease mutation. J Biol Chem 2002; 277 : 33791–8. [Google Scholar]
  35. Sarkar S, Ravikumar B, Floto RA, et al. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 2009; 16 : 46–56. [Google Scholar]
  36. Yang W, Leystra-Lantz C, Strong MJ. Upregulation of GSK3beta expression in frontal and temporal cortex in ALS with cognitive impairment (ALSci). Brain Res 2008; 1196 : 131–9. [Google Scholar]
  37. Feng HL, Leng Y, Ma CH, et al. Combined lithium and valproate treatment delays disease onset, reduces neurological deficits and prolongs survival in an amyotrophic lateral sclerosis mouse model. Neuroscience 2008; 155 : 567–72. [Google Scholar]
  38. Perez M, Rojo AI, Wandosell F, et al. Prion peptide induces neuronal cell death through a pathway involving glycogen synthase kinase 3. Biochem J 2003; 372 : 129–36. [Google Scholar]
  39. Heiseke A, Aguib Y, Riemer C, et al. Lithium induces clearance of protease resistant prion protein in prion-infected cells by induction of autophagy. J Neurochem 2009; 109 : 25–34. [Google Scholar]
  40. Andreu P, Perret C, Romagnolo B. Wnt et cellules souches intestinales : des liaisons dangereuse Med Sci (Paris) 2006; 22 : 693–5. [Google Scholar]
  41. Clavaguera F, Goedert M, Tolnay M. Induction et propagation de la pathologie par la protéine tau chez un modèle murin de la maladie d’Alzheimer. Med Sci (Paris) 2010; 26 : 123–4. [Google Scholar]
  42. Corti O, Brice A. La maladie de Parkinson: que nous apprennent les gènes responsables des formes familiales ? Med Sci (Paris) 2003; 19 : 613–9. [Google Scholar]
  43. Langui D, Lachapelle F, Duyckaerts C. Modèles animaux des maladies neuro-dégénératives. Med Sci (Paris) 2007; 23 : 180–6. [Google Scholar]
  44. Lelan F, Damier P. Les neurones dopaminergiques greffés dans la maladie de Parkinson sont-il à leur tour atteints par le processus dégénératif ? Med Sci (Paris) 2009; 25 : 15–6. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.