Accès gratuit
Numéro
Med Sci (Paris)
Volume 25, Numéro 8-9, Août-Septembre 2009
Page(s) 693 - 698
Section M/S revues
DOI https://doi.org/10.1051/medsci/2009258-9693
Publié en ligne 15 août 2009
  1. Matunis MJ, Coutavas E, Blobel G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex.J Cell Biol 1996; 135 : 1457–70. [Google Scholar]
  2. Hayashi T, Seki M, Maeda D, et al. Ubc9 is essential for viability of higher eukaryotic cells. Exp Cell Res 2002; 280 : 212–21. [Google Scholar]
  3. Nacerddine K, Lehembre F, Bhaumik M, et al. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 2005; 9 : 769–79. [Google Scholar]
  4. Tatham MH, Jaffray E, Vaughan OA, et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 2001; 276 : 35368–74. [Google Scholar]
  5. Hay RT. SUMO: a history of modification. Mol Cell 2005; 18 : 1–12. [Google Scholar]
  6. Mukhopadhyay D, Dasso M. Modification in reverse: the SUMO proteases. Trends Biochem Sci 2007;32 : 286–95. [Google Scholar]
  7. Geiss-Friedlander R, Melchior F. Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 2007;8 : 947–56. [Google Scholar]
  8. Heun P. SUMOrganization of the nucleus. Curr Opin Cell Biol 2007; 19 : 350–5. [Google Scholar]
  9. Perry JJ, Tainer JA, Bobby MN. A SIM-ultaneous role for SUMO and ubiquitin. Trends Biochem Sci 2008; 33 : 201–8. [Google Scholar]
  10. Kerscher O. SUMO junction-what’s your function ? New insights through SUMO-interacting motifs. EMBO Rep 2007; 8 : 550–5. [Google Scholar]
  11. Martin S, Wilkinson KA, Nishimune A, Henley JM. Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nat Rev Neurosci 2007; 8 : 948–59. [Google Scholar]
  12. Kadare G, Toutant M, Formstecher E, et al. PIAS1-mediated sumoylation of focal adhesion kinase activates its autophosphorylation. J Biol Chem 2003;278 : 47434–40. [Google Scholar]
  13. Dadke S, Cotteret S, Yip SC, et al. Regulation of protein tyrosine phosphatase 1B by sumoylation. Nat Cell Biol 2007; 9 : 80–5. [Google Scholar]
  14. Harder Z, Zunino R, McBride H. Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr Biol 2004; 14 : 340–5. [Google Scholar]
  15. Wasiak S, Zunino R, McBride HM. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 2007; 177 : 439–50. [Google Scholar]
  16. Zunino R, Schauss A, Rippstein P, et al. The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. J Cell Sci 2007; 120 : 1178–88. [Google Scholar]
  17. Martin S, Nishimune A, Mellor JR, Henley JM. SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature 2007; 447 : 321–5. [Google Scholar]
  18. Rodriguez-Munoz M, Bermudez D, Sanchez-Blazquez P, Garzon J. Sumoylated RGS-Rz proteins act as scaffolds for Mu-opioid receptors and G-protein complexes in mouse brain. Neuropsychopharmacology 2007; 32 : 842–50. [Google Scholar]
  19. Van Niekerk EA, Willis DE, Chang JH, et al. Sumoylation in axons triggers retrograde transport of the RNA-binding protein La. Proc Natl Acad Sci USA 2007; 104 : 12913–8. [Google Scholar]
  20. Shalizi A, Gaudilliere B, Yuan Z, et al. A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 2006; 311 : 1012–7. [Google Scholar]
  21. Chao HW, Hong CJ, Huang TN, et al. SUMOylation of the MAGUK protein CASK regulates dendritic spinogenesis. J Cell Biol 2008; 182 : 141–55. [Google Scholar]
  22. Rajan S, Plant LD, Rabin ML, et al. Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell 2005; 121 : 37–47. [Google Scholar]
  23. Feliciangeli S, Bendahhou S, Sandoz G, et al. Does Sumoylation control K2P1/TWIK1 background K+ channels ? Cell 2007; 130 : 563–69. [Google Scholar]
  24. Tang Z, El Far O, Betz H, Scheschonka A. Pias1 interaction and sumoylation of metabotropic glutamate receptor 8. J Biol Chem 2005; 280 : 38153–9. [Google Scholar]
  25. Wilkinson KA, Nishimune A, Henley JM. Analysis of SUMO-1 modification of neuronal proteins containing consensus SUMOylation motifs. Neurosci Lett 2008; 436 : 239–44. [Google Scholar]
  26. Pountney DL, Huang Y, Burns RJ, et al. SUMO-1 marks the nuclear inclusions in familial neuronal intranuclear inclusion disease. Exp Neurol 2003;184 : 436–46. [Google Scholar]
  27. Steffan JS, Agrawal N, Pallos J, et al. SUMO modification of Huntingtin and Huntington’s disease pathology. Science 2004; 304 : 100–4. [Google Scholar]
  28. Chan HY, Warrick JM, Andriola I, et al. Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. Hum Mol Genet 2002; 11 : 2895–904. [Google Scholar]
  29. Terashima T, Kawai H, Fujitani M, et al. SUMO-1 co-localized with mutant atrophin-1 with expanded polyglutamines accelerates intranuclear aggregation and cell death. Neuroreport 2002; 13 : 2359–64. [Google Scholar]
  30. Ueda H, Goto J, Hashida H, et al. Enhanced SUMOylation in polyglutamine diseases. Biochem Biophys Res Commun 2002; 293 : 307–13. [Google Scholar]
  31. Dorval V, Fraser PE. Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and alpha-synuclein. J Biol Chem 2006;281 : 9919–24. [Google Scholar]
  32. Um JW, Chung KC. Functional modulation of parkin through physical interaction with SUMO-1. J Neurosci Research 2006; 84 : 1543–54. [Google Scholar]
  33. Dorval V, Mazzella MJ, Mathews PM, et al. Modulation of Abeta generation by small ubiquitin-like modifiers does not require conjugation to target proteins. Biochem J 2007; 404 : 309–16. [Google Scholar]
  34. Li Y, Wang H, Wang S, et al. Positive and negative regulation of APP amyloidogenesis by sumoylation. Proc Natl Acad Sci USA 2003; 100 : 259–64. [Google Scholar]
  35. Buyse M, Aparicio T, Guilmeau S, et al. Paracrine actions of the stomach-derived leptin. Med Sci (Paris) 2004; 20 : 183–8. [Google Scholar]
  36. Galvez T, Pin JP. Comment fonctionne un récepteur couplé aux protéines G ? Le cas des récepteurs des neurotransmetteurs métabotropiques du glutamate et du GABA. Med Sci (Paris) 2003; 19 : 559–65. [Google Scholar]
  37. Liévens JC, Birman S. La chorée de Huntington chez la drosophile et chez la souris: vers de nouvelles pistes thérapeutiques ?. Med Sci (Paris) 2003;19 : 593–9. [Google Scholar]
  38. Corti O, Brice A. La maladie de Parkinson: que nous apprennent les gènes responsables des formes familiales ? Med Sci (Paris) 2003; 19 : 613–9. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.