Accès gratuit
Numéro
Med Sci (Paris)
Volume 24, Numéro 11, Novembre 2008
Page(s) 912 - 915
Section Nouvelles
DOI https://doi.org/10.1051/medsci/20082411912
Publié en ligne 15 novembre 2008
  1. Kobuke K, Piccolo F, Garringer KW, et al. A common disease-associated missense mutation in alphasarcoglycan fails to cause muscular dystrophy in mice. Hum Mol Genet 2008; 17 : 1201–13. [Google Scholar]
  2. Bartoli M, Gicquel E, Barrault L, et al. Mannosidase I inhibition rescues the human [alpha]-sarcoglycan R77C recurrent mutation. Hum Mol Genet 2008; 17 : 1214–21. [Google Scholar]
  3. Roberds SL, Anderson RD, Ibraghimov-Beskrovnaya O, Campbell KP. Primary structure and muscle-specific expression of the 50-kDa dystrophin-associated glycoprotein (adhalin). J Biol Chem 1993; 268 : 23739–42. [Google Scholar]
  4. Roberds SL, Leturcq F, Allamand V, et al. Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy. Cell 1994; 78 : 625–33. [Google Scholar]
  5. Piccolo F, Roberds SL, Jeanpierre M, et al. Primary adhalinopathy : a common cause of autosomal recessive muscular dystrophy of variable severity. Nat Genet 1995; 10 : 243–5. [Google Scholar]
  6. Carrié A, Piccolo F, Leturcq F, et al. Mutational diversity and hot spots in the alpha-sarcoglycan gene in autosomal recessive muscular dystrophy (LGMD2D). J Med Genet 1997; 34 : 470–5. [Google Scholar]
  7. Eymard B, Romero NB, Leturcq F, et al. Primary adhalinopathy (alpha-sarcoglycanopathy) : clinical, pathological and genetic correlation in twenty patients with autosomal recessive muscular dystrophy. Neurology 1997; 4 : 1227–34. [Google Scholar]
  8. Kaplan JC, Beckmann JS, Fardeau M. Limb girdle muscular dystrophies. In : Karpati G, Hilton-Jones D, Griggs R, eds. Disorders of voluntary muscle, chapter 20, 7e ed. Cambridge : Cambridge University Press, 2001 : 433–63. [Google Scholar]
  9. Ervasti JM, Campbell KP. Membrane organization of the dystrophin-glycoprotein complex. Cell 1991; 66 : 1121–31. [Google Scholar]
  10. Ozawa E, Mizuno Y, Hagiwara Y, et al . Molecular and cell biology of the sarcoglycan complex. Muscle Nerve 2005; 32 : 563–76. [Google Scholar]
  11. Holt K, Campbell K. Assembly of the sarcoglycan complex. Insights for muscular dystrophy. J Biol Chem 1998; 23 : 34667–70. [Google Scholar]
  12. Allikian MJ, McNally EM. Processing and assembly of the dystrophin glycoprotein complex. Traffic 2007; 8 : 177–83. [Google Scholar]
  13. Lim L, Campbell K. The sarcoglycan complex in limbgirdle muscular dystrophy. Curr Opin Neurol 1998; 11 : 443–52. [Google Scholar]
  14. Trabelsi M, Kavian N, Daoud F, et al. Revised spectrum of mutations in sarcoglycanopathies. Eur J Hum Genet 2008; 16 : 793–803. [Google Scholar]
  15. Duclos F, Straub V, Moore SA, et al. Progressive muscular dystrophy in alpha-sarcoglycan-deficient mice. J Cell Biol 1998; 142 : 1461–71. [Google Scholar]
  16. Durbeej M, Campbell KP. Muscular dystrophies involving the dystrophin-glycoprotein complex : an overview of current mouse models. Curr Opin Genet Dev 2002; 12 : 349–61. [Google Scholar]
  17. LOVD. Leiden Muscular Dystrophy pages. http://www. dmd.nl/nmdb/home.php [Google Scholar]
  18. Draviam RA, Wang B, Shand SH, et al. Alphasarcoglycan is recycled from the plasma membrane in the absence of sarcoglycan complex assembly. Traffic 2006; 7 : 793–810. [Google Scholar]
  19. Hebert DN , Molinari M. In and out of the ER : protein folding, quality control, degradation, and related human diseases. Physiol Rev 2007; 87 : 1377–408. [Google Scholar]
  20. Roth J, Yam GH, Fan J, et al. Protein quality control : the who’s who, the where’s and therapeutic escapes. Histochem Cell Biol 2008; 129 : 163–77. [Google Scholar]
  21. Elbein AD, Kerbacher JK, Schwartz CJ, Sprague EA. Kifunensine inhibits glycoprotein processing and the function of the modified LDL receptor in endothelial cells. Arch Biochem Biophys 1991; 288 : 177–84. [Google Scholar]
  22. Tokunaga F, Brostrom C, Koide T, Arvan P. Endoplasmic reticulum (ER)-associated degradation of misfolded N-linked glycoproteins is suppressed upon inhibition of ER mannosidase I. J Biol Chem 2000; 275 : 40757–64. [Google Scholar]
  23. Gregersen N, Bross P, Vang S, Christensen JH. Protein misfolding and human disease. Annu Rev Genomics Hum Genet 2006; 7 : 103–24. [Google Scholar]
  24. Aridor M. Visiting the ER : the endoplasmic reticulum as a target for therapeutics in traffic related diseases. Adv Drug Deliv Rev 2007; 59 : 759–81. [Google Scholar]
  25. French PJ, van Doorninck JH, Peters RH, et al. A delta F508 mutation in mouse cystic fibrosis transmembrane conductance regulator results in a temperature-sensitive processing defect in vivo. J Clin Invest 1996; 98 : 1304–12. [Google Scholar]
  26. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007; 8 : 519–29. [Google Scholar]
  27. Bernier V, Lagacé M, Bichet DG, Bouvier M. Pharmacological chaperones : potential treatment for conformational diseases. Trends Endocrinol Metab 2004; 15 : 222–8. [Google Scholar]
  28. Fan JQ. A counterintuitive approach to treat enzyme deficiencies : use of enzyme inhibitors for restoring mutant enzyme activity. Biol Chem 2008; 389 : 1–11. [Google Scholar]
  29. Hamanaka R, Shinohara T, Yano S, et al. Rescue of mutant alpha-galactosidase A in the endoplasmic reticulum by 1-deoxygalactonojirimycin leads to trafficking to lysosomes. Biochim Biophys Acta 2008; 1782 : 408–13. [Google Scholar]
  30. Pey AL, Ying M, Cremades N, et al. Identification of pharmacological chaperones as potential therapeutic agents to treat phenylketonuria. J Clin Invest 2008; 118 : 2858–67. [Google Scholar]
  31. Tropak MB, Mahuran D. Lending a helping hand, screening chemical libraries for compounds that enhance beta-hexosaminidase; A activity in GM2 gangliosidosis cells. FEBS Journal 2007; 274 : 4951–61. [Google Scholar]
  32. Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science 2008; 319 : 916–9. [Google Scholar]
  33. Foufelle F, Ferré P. La réponse UPR : son rôle physiologique et physiopathologique. Med Sci (Paris) 2007; 23 : 291–6. [Google Scholar]
  34. Yon-Kahn J. Repliement des protéines : études in vitro. Med Sci (Paris) 2005; 21 : 601–7. [Google Scholar]
  35. Goldberg ME. Le repliement des protéines : seconde traduction du message génétique. Med Sci (Paris) 2005; 21 : 563–6. [Google Scholar]
  36. Kaplan JC, Delpech M. Biologie moléculaire et médecine, 3e ed. Collection De la biologie à la clinique. Paris : Flammarion Médecine-Sciences, 2007 : 820 p. [Google Scholar]
  37. Chevet E. Inflammation intestinale et stress du réticulum endoplasmique : un lien génétique. Med Sci (Paris) 2008; 24 : 899–900. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.