Accès gratuit
Med Sci (Paris)
Volume 23, Numéro 10, Octobre 2007
Page(s) 834 - 839
Section M/S revues
Publié en ligne 15 octobre 2007
  1. Tupler R, Perini G, Green MR. Expressing the human genome. Nature 2001; 409 : 832–3.
  2. Miller J, McLachlan AD, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 1985; 4 : 1609–14.
  3. Pavletich NP, Pabo CO. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2,1 Å. Science 1991; 252 : 809–17.
  4. Isalan M, Klug A, Choo Y. Comprehensive DNA recognition through concerted interactions from adjacent zinc fingers. Biochemistry 1998; 37 : 12026–33.
  5. Mc Namara RA, Ford KG. A novel four zinc-finger protein targeted against p190BcrAbl fusion oncogene cDNA: utilisation of zinc-finger recognition codes. Nucleic Acids Res 2000; 24 : 4865–72.
  6. Desjarlais JR, Berg JM. Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc Natl Acad Sci USA 1993; 90 : 2256–60.
  7. Choo Y, Klug A. Toward a code for interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc Natl Acad Sci USA 1994; 91 : 11163–7.
  8. Greisman HA, Pabo CO. A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science 1997; 275 : 657–61.
  9. Dreier B, Fuller RP, Segal DJ, et al. Development of zinc finger domains for recognition of the 5’-CNN-3’ family of DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem 2005; 280 : 35588–97.
  10. Isalan M, Klug A, Choo Y. A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat Biotechnol 2001; 19 : 656–60.
  11. Bartsevich VV, Juliano RL. Regulation of the MDR1 gene by transcriptional repressors selected using peptide combinatorial libraries. Mol Pharmacol 2000; 58 : 1–10.
  12. Hurt JA, Thibodeau SA, Hirsh AS, et al. Highly specific zinc finger proteins obtained by directed domain shuffling and cell based selection. Proc Natl Acad Sci USA 2003; 100 : 12271–6.
  13. Bae KH, Do Kwon Y, Shin HC, et al. Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat Biotechnol 2003; 21 : 275–80.
  14. Liu PQ, Segal DJ, Ghiara JB, Barbas CF 3rd. Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci USA 1997; 94 : 5525–30.
  15. Segal DJ, Barbas CF 3rd. Custom DNA-binding proteins come of age: polydactyl zinc-finger proteins. Curr Opin Biotechnol 2001; 12 : 632–7
  16. Beerli RR, Barbas CF 3rd. Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol 2002; 20 : 135–41.
  17. Kim JS, Pabo CO. Getting a handhold on DNA: design of poly-zinc finger proteins with femtomolar dissociation constant. Proc Natl Acad Sci USA 1998; 95 : 2812–7.
  18. Peisach E, Pabo CO. Constraints for zinc finger linker design as inferred from X-ray crystal structure of tandem Zif268-DNA complexes. J Mol Biol 2003; 330 : 1–7.
  19. Moore M, Klug A, Choo Y. Improved DNA binding specificity from polyzinc finger peptides by using strings of two finger units. Proc Natl Acad Sci USA 2001; 98 : 1437–41.
  20. Choo Y, Sanchez-Garcia I, Klug A. In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequence. Nature 1994; 372 : 642–5.
  21. Papworth M, Moore M, Isalan M, et al. Inhibition of herpes simplex virus 1 gene expression by designed zinc-finger transcription factors. Proc Natl Acad Sci USA 2003; 100 : 1621–6.
  22. Carvin CD, Parr RD, Kladde MP. Site-selective in vivo targeting of cytosine-5 DNA methylation by zinc-finger proteins. Nucleic Acids Res 2003; 31 : 6493–501.
  23. Snowden AW, Gregory PD, Case CC, Pabo CO. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol 2002; 12 : 2159–66.
  24. Thiesen HJ, Bellefroid E, Revelant O, Martial JA. Conserved KRAB protein domain identified upstream from the zinc finger region of Kox 8. Nucleic Acids Res 1991; 19 : 3996.
  25. Beerli RR, Segal DJ, Dreier B, Barbas III CF. Toward controlling gene expression at will : specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci USA 1998; 95 : 14628–33.
  26. Bartsevich VV, Miller JC, Case CC, Pabo CO. Engineered zinc finger proteins for controlling stem cell fate. Stem Cells 2003; 21 : 632–7.
  27. Guan X, Stege J, Kim M, et al. Heritable endogenous gene regulation in plants with designed polydactyl zinc finger transcription factors. Proc Natl Acad Sci USA 2002; 99 : 13296–301.
  28. Rebar EJ, Huang Y, Hickey R, et al. Induction of angiogenesis in a mouse model using engineered transcription factors. Nat Med 2002; 8 : 1427–32.
  29. Tan W, Zhu K, Segal DJ, et al. Fusion proteins consisting of human immunodeficiency virus type 1 integrase and the designed polydactyl zinc finger protein EC2 direct integration of viral DNA into specific sites. J Virol 2004; 78 : 1301–13.
  30. Akopian A, He J, Boocock MR, Stark WM. Chimeric recombinases with designed DNA sequence recognition. Proc Natl Acad Sci USA 2003; 100 : 8688–91.
  31. Bibikova M, Golic M, Golic KG, Caroll D. Targeted chromosomal cleavage and mutagenesis in drosophila using Zinc Finger nucleases. Genetics 2002; 161 : 1169–75.
  32. Puchta H, Dujon B, Hohn B. Homologous recombination in plant cells is enhanced by in vivo induction of double-strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res 1993; 21 : 5034–40.
  33. Urnov FD, Miller JC, Lee YL, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005; 435 : 646–51.
  34. Wright DA, Townsend JA, Winfrey H, et al. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 2005; 44 : 693–705.
  35. Uil TG, Haisma HJ, Rots MG. Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities. Nucleic Acids Res 2003; 31 : 6064–78.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.