Accès gratuit
Med Sci (Paris)
Volume 23, Numéro 10, Octobre 2007
Page(s) 840 - 844
Section M/S revues
Publié en ligne 15 octobre 2007
  1. Rosen DR. Mutations in Zn/Cu superoxyde dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362 : 59–62. [Google Scholar]
  2. Mattiazzi M, D’Aurelio M, Gajewski CD, et al. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J Biol Chem 2002; 277 : 29626–33. [Google Scholar]
  3. Sasaki S, Itawa M. Impairment of fast axonal transport in the proximal axons of anterior horn neurons in amyotrophic lateral sclerosis. Neurology 1996; 47 : 535–40. [Google Scholar]
  4. Wiedemann FR, Manfredi G, Mawrin C, et al. Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J Neurochem 2002; 80 : 616–25. [Google Scholar]
  5. Tanzi RE, Bertam L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 2005; 120 : 545–55. [Google Scholar]
  6. Manczak M, Anekonda TS, Henson E, et al. Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 2006; 15 : 1437–49. [Google Scholar]
  7. Abou-Sleiman PM, Muqit MMK, Wood NW. Expanding insight of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 2006; 7 : 207–19. [Google Scholar]
  8. Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219 : 979–80. [Google Scholar]
  9. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443 : 787–95. [Google Scholar]
  10. Browne SE, Beal MF. The energetics of Huntington’s disease. Neurochem Res 2004; 29 : 531–46. [Google Scholar]
  11. Milakovic T, Johnson GV. Mitochondrial respiration and ATP production are significantly impaired in striatal cells expressing mutant huntingtin. J Biol Chem 2005; 280 : 30773–82. [Google Scholar]
  12. McGill JK, Beal MF. PGC1-α a new therapeutic target in Huntington disease. Cell 2006; 127 : 465–8. [Google Scholar]
  13. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005; 120 : 483–95. [Google Scholar]
  14. Chen Q, Vazquez EJ, Moghaddas S, et al. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 2003; 278 : 36027–31. [Google Scholar]
  15. Echtay KS, Roussel D, St-Pierre J, et al. Superoxide activates mitochondrial uncoupling proteins. Nature 2002; 415 : 96–9. [Google Scholar]
  16. Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 2004; 18 : 357–68. [Google Scholar]
  17. Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999; 98 : 115–24. [Google Scholar]
  18. St-Pierre J, Drori S, Uldry M, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 2006; 127 : 397–408. [Google Scholar]
  19. Lin J, Wu PH, Tarr PT, et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 2004; 119 : 121–35. [Google Scholar]
  20. Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005; 434 : 113–8. [Google Scholar]
  21. Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006; 127 : 1–14. [Google Scholar]
  22. Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir-2 like proteins. Biochem Biophys Res Commun 2000; 273 : 793–8. [Google Scholar]
  23. Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 2004; 305 : 1010–3. [Google Scholar]
  24. Qin W, Yang T, Ho L, et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 2006; 281 : 21745–54. [Google Scholar]
  25. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303 : 2011–5. [Google Scholar]
  26. Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003; 425 : 191–6. [Google Scholar]
  27. Han YS, Bastianetto S, Dumont Y, Quirion R. Specific plasma membrane binding sites for polyphenols, including resveratrol, in the rat brain. J Pharmacol Exp Ther 2006; 318 : 238–45. [Google Scholar]
  28. Wang Q, Yu S, Simonyi A, et al. Resveratrol protects against neurotoxicity induced by kainic acid. Neurochemical Research 2004; 29 : 2105–12. [Google Scholar]
  29. Parker JA, Arango M, Abderrahmane S, et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 2005; 37 : 349–50. [Google Scholar]
  30. Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 2005; 280 : 37377–82. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.