Accès gratuit
Numéro |
Med Sci (Paris)
Volume 22, Numéro 4, Avril 2006
|
|
---|---|---|
Page(s) | 411 - 415 | |
Section | M/S revues | |
DOI | https://doi.org/10.1051/medsci/2006224411 | |
Publié en ligne | 15 avril 2006 |
- Karlsson KA. Sphingolipid long chain bases. Lipids 1970; 5 : 878–91. [Google Scholar]
- Liu G, Kleine L, Hebert R. Advances in the signal transduction of ceramide and related sphingolipids. Crit Clin Lab Sci 1999; 36 : 511–73. [Google Scholar]
- Rietveld A, Simons K. The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim Biophys Acta 1998; 1376 : 467–79. [Google Scholar]
- Ramstedt B, Slotte JP. Membrane properties of sphingomyelins. FEBS Lett 2002; 531 : 33–7. [Google Scholar]
- Brown DA, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 2000; 275 : 17221–4. [Google Scholar]
- Simons K, van Meer G. Lipid sorting in epithelial cells. Biochemistry 1988; 27 : 6197–202. [Google Scholar]
- Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387 : 569–72. [Google Scholar]
- Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000; 1 : 31–9. [Google Scholar]
- Hoessli DC, Ilangumaran S, Soltermann A, et al. Signaling through sphingolipid microdomains of the plasma membrane: the concept of signaling plateform. Glycoconj J 2000; 17 : 191–7. [Google Scholar]
- Tsui-Pierchala BA, Encinas M, Milbrandt J, Johnson EM Jr. Lipid rafts in neuronal signaling and function. Trends Neurosci 2002; 25 : 412–7. [Google Scholar]
- Pike LJ. Lipid rafts : bringing order to chaos. J Lipid Res 2003; 44 : 655–67. [Google Scholar]
- Hiol A, Davey PC, Osterhout JL, et al. Palmitoylation regulates RGS16 function I. Mutation of amino terminal cysteine residues on RGS16 prevents its targeting to lipid rafts and palmitoylation of an internal cysteine residue. J Biol Chem 2003; 278 : 19301–8. [Google Scholar]
- Osterhout JL, Waheed AA, Hiol A, et al. Palmitoylation regulates RGS16 function II. Palmitoylation of a cysteine residue in the RGS box is critical for RGS16 GTPase accelerating activity and regulation of Gi-coupled signalling. J Biol Chem 2003; 278 : 19309–16. [Google Scholar]
- O’Brien JS, Sampson EL. Lipid composition of the normal human brain : gray matter, white matter, and myelin. J Lipid Res 1965; 6 : 537–44. [Google Scholar]
- Stoffel W, Bosio A. Myelin glycolipids and their functions. Curr Opin Neurobiol 1997; 7 : 654–61. [Google Scholar]
- Subbaiah PV, Sargis RM. Sphingomyelin : a natural modulator of membrane homeostasis and inflammation. Med Hypotheses 2001; 57 : 135–8. [Google Scholar]
- Fishman PH, Brady RO. Biosynthesis and function of gangliosides. Science 1976; 194 : 906–15. [Google Scholar]
- McKerracher L, Winton MJ. Nogo on the go. Neuron 2002; 36 : 345–8. [Google Scholar]
- Yang LJ, Zeller CB, Shaper NL, et al. Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc Natl Acad Sci USA 1996; 93 : 814–8. [Google Scholar]
- Brown DA, London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 1998; 14 : 111–36. [Google Scholar]
- Montecucco C. How do tetanus and botulinum toxins bind to neuronal membranes ? Trends Biochem Sci 1986; 11 : 314–7. [Google Scholar]
- Fantini J, Garmy N, Mahfoud R, Yahi N. Lipid rafts : structure, function and role in HIV, Alzheimers and prion diseases. Expert Rev Mol Med 2002; 1–22. [Google Scholar]
- Bavari S, Bosio CM, Wiegand E, et al. Lipid raft microdomains : a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med 2002; 195 : 593–602. [Google Scholar]
- Simons K, Ehehalt R. Cholesterol, lipid rafts, and disease. J Clin Invest 2002; 110 : 597–603. [Google Scholar]
- O’Hanlon GM, Bullens RW, Plomp JJ, Willison HJ. Complex gangliosides as autoantibody targets at the neuromuscular junction in Miller Fisher syndrome : a current perspective. Neurochem Res 2002; 27 : 697–709. [Google Scholar]
- Hanada K. Sphingolipids in infectious diseases. Jpn J Infect Dis 2005; 58: 131–48. [Google Scholar]
- Futerman AH, van Meer G. The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 2004; 5 : 554–65. [Google Scholar]
- Kolodny EH. Niemann-Pick disease. Curr Opin Hematol 2000; 7 : 48–52. [Google Scholar]
- Jmoudiak M, Futerman AH. Gaucher disease: pathological mechanisms and modern management. Br J Haematol 2005; 129 : 178–88. [Google Scholar]
- Masson C, Cisse I, Simon V, et al. Fabry disease : a review. Joint Bone Spine 2004; 71 : 381–3. [Google Scholar]
- Suzuki K. Globoid cell leucodystrophy (Krabbe’s disease): update. J Child Neurol 2003; 18 : 595–603. [Google Scholar]
- Gieselmann V, Franken S, Klein D, et al. Metachromatic leukodystrophy : consequence of sulphatide accumulation. Acta Paediatr 2003; 92 (suppl) : 74–9. [Google Scholar]
- Kaback MM, Desnick RJ. Tay-Sachs disease : from clinical description to molecular defect. Adv Genet 2001; 44 : 1–9. [Google Scholar]
- Bar J, Linke T, Ferlinz K, et al. Molecular analysis of acid ceramidase deficiency in patients with Farber disease. Hum Mutat 2001; 17 : 199–209. [Google Scholar]
- Vellodi A. Lysosomal storage disorders. Br J Haematol 2005; 128 : 413–31. [Google Scholar]
- Suzuki K. Twenty five years of the "psychosine hypothesis": a personal perspective of its history and present status. Neurochem Res 1998; 23 : 251–9. [Google Scholar]
- Mitchison TJ. Psychosine, cytokinesis and orphan receptors : unexpected connections. J Cell Biol 2001; 153 : F1–4. [Google Scholar]
- Spiegel S, Milstien S. Sphingosine-1-phosphate : an enigmatic signalling lipid. Nat Rev Mol Cell Biol 2003; 4 : 397–407. [Google Scholar]
- Farina F, Cappello F, Todaro M, et al. Involvement of caspase-3 and GD3 ganglioside in ceramide induced apotosis in Farber disease. J Histochem. Cytochem 2000; 48 : 57–62. [Google Scholar]
- Zhou YT, Grayburn P, Karim A, et al. Lipotoxic heart disease in obese rats : implications for human obesity. Proc Natl Acad Sci USA 2000; 97 : 1784–9. [Google Scholar]
- Miranda SR, He X, Simonaro CM, et al. Infusion of recombinant human acid sphingomyelinase into Niemann-Pick disease mice leads to visceral, but not neurological, correction of the pathophysiology. FASEB J 2000; 14 : 1988–95. [Google Scholar]
- Bae JS, Jang KH, Schuchman TR, et al. Comparative effects of recombinant acid sphingomyelinase administration by different routes in Niemann-Pick disease mice. Exp Anim 2004; 53 : 417–21. [Google Scholar]
- Brady RO. Enzyme replacement therapy : conception, chaos and culmination. Philos Trans R Soc Lond B Biol Sci 2003; 358 : 915–9. [Google Scholar]
- Platt FM, Jeyakumar M, Andersson U, et al. Inhibition of substrate synthesis as a strategy for glycolipid lysosomal storage disease therapy. J Inherit Metab Dis 2001; 24 : 275–90. [Google Scholar]
- Zimran A, Elstein D. Gaucher disease and the clinical experience with substrate reduction therapy. Philos Trans R Soc Lond B Biol Sci 2003; 358 : 961–6. [Google Scholar]
- Moyses C. Substrate reduction therapy : clinical evaluation in type 1 Gaucher disease. Philos Trans R Soc Lond B Biol Sci 2003; 358 : 955–60. [Google Scholar]
- Cox TM. Substrate reduction therapy for lysosomal storage diseases. Acta Paediatr 2005; 94 (suppl) : 69–75. [Google Scholar]
- Ellinwood NM, Vite CH, Haskins ME. Gene therapy for lysosomal storage diseases: the lessons and promise of animal models. J Gene Med 2004; 6 : 481–506. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.