Accès gratuit
Numéro
Med Sci (Paris)
Volume 22, Numéro 1, Janvier 2006
Page(s) 54 - 61
Section M/S revues
DOI https://doi.org/10.1051/medsci/200622154
Publié en ligne 15 janvier 2006
  1. Feinberg AP. The epigenetics of cancer etiology. Sem Cancer Biol 2004; 14 : 427–32.
  2. Wales MM, Biel MA, El-Deiry W, et al. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat Med 1995; 1 : 570–7.
  3. Schultz DC, Vanderveer L, Berman DB, et al. Identification of two candidate tumor suppressor genes on chromosome 17p13.3. Cancer Res 1996; 56 : 1997–2002.
  4. Pinte S, Stankovic-Valentin N, Deltour S, et al. The tumor suppressor gene HIC1 (hypermethylated in cancer 1) is a sequence-specific transcriptional repressor : definition of its consensus binding sequence and analysis of its DNA binding and repressive properties. J Biol Chem 2004; 279 : 38313–24.
  5. Deltour S, Pinte S, Guerardel C, et al. The human candidate tumor suppressor gene HIC1 recruits CtBP through a degenerate GLDLSKK motif. Mol Cell Biol 2002; 22 : 4890–901.
  6. Prive GG, Melnick A, Ahmad K, Licht JD. Zinc finger proteins : from atomic contact to cellular function. In : Iuchi S, Kuldell N, eds. Georgetown : Landes Biosciences, 2004.
  7. Deltour S, Guerardel C, Leprince D. Recruitment of SMRT/N-CoR-mSin3A-HDAC repressing complexes is not a general mechanism for BTB/POZ transcriptional repressors : the case of HIC-1 and gammaFBP-B. Proc Natl Acad Sci USA 1999; 96 : 14831–6.
  8. Yang XJ, Gregoire S. Class II histone deacetylases : from sequence to function, regulation, and clinical implication. Mol Cell Biol 2005; 25 : 2873–84.
  9. Yamanaka M, Watanabe M, Yamada Y, et al. Altered methylation of multiple genes in carcinogenesis of the prostate. Int J Cancer 2003; 106 : 382–7.
  10. Kanai Y, Ushijima S, Ochiai A, et al. DNA hypermethylation at the D17S5 locus is associated with gastric carcinogenesis. Cancer Lett 1998; 122 : 135–41.
  11. Pieretti M, Powell DE, Gallion HH, et al. Hypermethylation at a chromosome 17 « hot spot » is a common event in ovarian cancer. Hum Pathol 1995; 26 : 398–401.
  12. Fujii H, Biel MA, Zhou W, et al. Methylation of the HIC-1 candidate tumor suppressor gene in human breast cancer. Oncogene 1998; 16 : 2159–64.
  13. Rood BR, Zhang H, Weitman DM, Cogen PH. Hypermethylation of HIC-1 and 17p allelic loss in medulloblastoma. Cancer Res 2002; 62 : 3794–7.
  14. Chen WY, Zeng X, Carter MG, et al. Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Nat Genet 2003; 33 : 197–202.
  15. Kwabi-Addo B, Giri D, Schmidt K, et al. Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc Natl Acad Sci USA 2001; 98 : 11563–8.
  16. DePinho RA. The age of cancer. Nature 2000; 408 : 248–54.
  17. Quon KC, Berns A. Haplo-insufficiency ? Let me count the ways. Genes Dev 2001; 15 : 2917–21.
  18. Wynshaw-Boris A, Gambello MJ. LIS1 and dynein motor function in neuronal migration and development. Genes Dev 2001; 15 : 639–51.
  19. Cardoso C, Leventer RJ, Ward HL, et al. Refinement of a 400-kb critical region allows genotypic differentiation between isolated lissencephaly, Miller-Dieker syndrome, and other phenotypes secondary to deletions of 17p13.3. Am J Hum Genet 2003; 72 : 918–30.
  20. Carter MG, Johns MA, Zeng X, et al. Mice deficient in the candidate tumor suppressor gene Hic1 exhibit developmental defects of structures affected in the Miller-Dieker syndrome. Hum Mol Genet 2000; 9 : 413–9.
  21. Grimm C, Sporle R, Schmid TE, et al. Isolation and embryonic expression of the novel mouse gene Hic1, the homologue of HIC1, a candidate gene for the Miller-Dieker syndrome. Hum Mol Genet 1999; 8 : 697–710.
  22. Chen CM, Behringer RR. Ovca1 regulates cell proliferation, embryonic development, and tumorigenesis. Genes Dev 2004; 18 : 320–32.
  23. Chen W, Cooper TK, Zahnow CA, et al. Epigenetic and genetic loss of Hic1 function accentuates the role of p53 in tumorigenesis. Cancer Cell 2004; 6 : 387–98.
  24. Britschgi C, Rizzi M, Grob TJ, et al. Identification of the p53 family-responsive element in the promoter region of the tumor suppressor gene hypermethylated in cancer 1. Oncogene 2005; november 21 (online).
  25. Guerardel C, Deltour S, Pinte S, et al. Identification in the human candidate tumor suppressor gene HIC-1 of a new major alternative TATA-less promoter positively regulated by p53. J Biol Chem 2001; 276 : 3078–89.
  26. Chen W, Wamng DH, Yen RC, et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53 dependent DNA damage responses. Cell 2005; 123 : 437–48.
  27. Vaziri H, Dessain SK, Ng-Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001; 107 : 149–59.
  28. Senawong T, Peterson VJ, Leid M. BCL11A-dependent recruitment of SIRT1 to a promoter template in mammalian cells results in histone deacetylation and transcriptional repression. Arch Biochem Biophys 2005; 434 : 316–25.
  29. Chen WY, Baylin SB. Inactivation of tumor suppressor genes : choice between genetic and epigenetic routes. Cell Cycle 2005; 4 : 10–2.
  30. Nicoll G, Crichton DN, McDowell HE, et al. Expression of the hypermethylated in cancer gene (HIC-1) is associated with good outcome in human breast cancer. Br J Cancer 2001; 85 : 1878–82.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.